This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcinv.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| funcinv.s | ⊢ 𝐼 = ( Inv ‘ 𝐷 ) | ||
| funcinv.t | ⊢ 𝐽 = ( Inv ‘ 𝐸 ) | ||
| funcinv.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| funcinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| funcinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| funcinv.m | ⊢ ( 𝜑 → 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁 ) | ||
| Assertion | funcinv | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcinv.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | funcinv.s | ⊢ 𝐼 = ( Inv ‘ 𝐷 ) | |
| 3 | funcinv.t | ⊢ 𝐽 = ( Inv ‘ 𝐸 ) | |
| 4 | funcinv.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 5 | funcinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | funcinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | funcinv.m | ⊢ ( 𝜑 → 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁 ) | |
| 8 | eqid | ⊢ ( Sect ‘ 𝐷 ) = ( Sect ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( Sect ‘ 𝐸 ) = ( Sect ‘ 𝐸 ) | |
| 10 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 11 | 4 10 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 15 | 1 2 14 5 6 8 | isinv | ⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁 ↔ ( 𝑀 ( 𝑋 ( Sect ‘ 𝐷 ) 𝑌 ) 𝑁 ∧ 𝑁 ( 𝑌 ( Sect ‘ 𝐷 ) 𝑋 ) 𝑀 ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( 𝜑 → ( 𝑀 ( 𝑋 ( Sect ‘ 𝐷 ) 𝑌 ) 𝑁 ∧ 𝑁 ( 𝑌 ( Sect ‘ 𝐷 ) 𝑋 ) 𝑀 ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝑀 ( 𝑋 ( Sect ‘ 𝐷 ) 𝑌 ) 𝑁 ) |
| 18 | 1 8 9 4 5 6 17 | funcsect | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) |
| 19 | 16 | simprd | ⊢ ( 𝜑 → 𝑁 ( 𝑌 ( Sect ‘ 𝐷 ) 𝑋 ) 𝑀 ) |
| 20 | 1 8 9 4 6 5 19 | funcsect | ⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 22 | 13 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 23 | 1 21 4 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 24 | 23 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 25 | 23 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐸 ) ) |
| 26 | 21 3 22 24 25 9 | isinv | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ↔ ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ∧ ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
| 27 | 18 20 26 | mpbir2and | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) |