This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| funcoppc2.f | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) 𝐺 ) | ||
| Assertion | funcoppc2 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) tpos 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | funcoppc2.f | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) 𝐺 ) | |
| 6 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 7 | eqid | ⊢ ( oppCat ‘ 𝑃 ) = ( oppCat ‘ 𝑃 ) | |
| 8 | 6 7 5 | funcoppc | ⊢ ( 𝜑 → 𝐹 ( ( oppCat ‘ 𝑂 ) Func ( oppCat ‘ 𝑃 ) ) tpos 𝐺 ) |
| 9 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 11 | 1 | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 13 | 2 | 2oppchomf | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 15 | 2 | 2oppccomf | ⊢ ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 17 | 3 | elexd | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 18 | fvexd | ⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ V ) | |
| 19 | 4 | elexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 20 | fvexd | ⊢ ( 𝜑 → ( oppCat ‘ 𝑃 ) ∈ V ) | |
| 21 | 10 12 14 16 17 18 19 20 | funcpropd | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = ( ( oppCat ‘ 𝑂 ) Func ( oppCat ‘ 𝑃 ) ) ) |
| 22 | 21 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) tpos 𝐺 ↔ 𝐹 ( ( oppCat ‘ 𝑂 ) Func ( oppCat ‘ 𝑃 ) ) tpos 𝐺 ) ) |
| 23 | 8 22 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) tpos 𝐺 ) |