This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| funcoppc4.f | ⊢ ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) ) | ||
| Assertion | funcoppc4 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | funcoppc4.f | ⊢ ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) ) | |
| 6 | 5 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝑂 Func 𝑃 ) ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) ) |
| 7 | 1 2 3 4 6 | funcoppc2 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) ( 𝐶 Func 𝐷 ) tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) ) |
| 8 | relfunc | ⊢ Rel ( 𝑂 Func 𝑃 ) | |
| 9 | df-ov | ⊢ ( 𝐹 oppFunc 𝐺 ) = ( oppFunc ‘ 〈 𝐹 , 𝐺 〉 ) | |
| 10 | eqidd | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 𝐹 , 𝐺 〉 ) | |
| 11 | 5 8 9 10 | oppf1st2nd | ⊢ ( 𝜑 → ( ( 𝐹 oppFunc 𝐺 ) ∈ ( V × V ) ∧ ( ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 ∧ ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 ) ) ) |
| 12 | 11 | simprld | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐹 ) |
| 13 | 11 | simprrd | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos 𝐺 ) |
| 14 | 13 | tposeqd | ⊢ ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = tpos tpos 𝐺 ) |
| 15 | 5 8 9 10 | oppfrcl3 | ⊢ ( 𝜑 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 16 | tpostpos2 | ⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 18 | 14 17 | eqtrd | ⊢ ( 𝜑 → tpos ( 2nd ‘ ( 𝐹 oppFunc 𝐺 ) ) = 𝐺 ) |
| 19 | 7 12 18 | 3brtr3d | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |