This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| funcoppc2.f | |- ( ph -> F ( O Func P ) G ) |
||
| Assertion | funcoppc2 | |- ( ph -> F ( C Func D ) tpos G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | funcoppc2.f | |- ( ph -> F ( O Func P ) G ) |
|
| 6 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 7 | eqid | |- ( oppCat ` P ) = ( oppCat ` P ) |
|
| 8 | 6 7 5 | funcoppc | |- ( ph -> F ( ( oppCat ` O ) Func ( oppCat ` P ) ) tpos G ) |
| 9 | 1 | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 10 | 9 | a1i | |- ( ph -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 11 | 1 | 2oppccomf | |- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 12 | 11 | a1i | |- ( ph -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 13 | 2 | 2oppchomf | |- ( Homf ` D ) = ( Homf ` ( oppCat ` P ) ) |
| 14 | 13 | a1i | |- ( ph -> ( Homf ` D ) = ( Homf ` ( oppCat ` P ) ) ) |
| 15 | 2 | 2oppccomf | |- ( comf ` D ) = ( comf ` ( oppCat ` P ) ) |
| 16 | 15 | a1i | |- ( ph -> ( comf ` D ) = ( comf ` ( oppCat ` P ) ) ) |
| 17 | 3 | elexd | |- ( ph -> C e. _V ) |
| 18 | fvexd | |- ( ph -> ( oppCat ` O ) e. _V ) |
|
| 19 | 4 | elexd | |- ( ph -> D e. _V ) |
| 20 | fvexd | |- ( ph -> ( oppCat ` P ) e. _V ) |
|
| 21 | 10 12 14 16 17 18 19 20 | funcpropd | |- ( ph -> ( C Func D ) = ( ( oppCat ` O ) Func ( oppCat ` P ) ) ) |
| 22 | 21 | breqd | |- ( ph -> ( F ( C Func D ) tpos G <-> F ( ( oppCat ` O ) Func ( oppCat ` P ) ) tpos G ) ) |
| 23 | 8 22 | mpbird | |- ( ph -> F ( C Func D ) tpos G ) |