This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcinv.b | |- B = ( Base ` D ) |
|
| funcinv.s | |- I = ( Inv ` D ) |
||
| funcinv.t | |- J = ( Inv ` E ) |
||
| funcinv.f | |- ( ph -> F ( D Func E ) G ) |
||
| funcinv.x | |- ( ph -> X e. B ) |
||
| funcinv.y | |- ( ph -> Y e. B ) |
||
| funcinv.m | |- ( ph -> M ( X I Y ) N ) |
||
| Assertion | funcinv | |- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcinv.b | |- B = ( Base ` D ) |
|
| 2 | funcinv.s | |- I = ( Inv ` D ) |
|
| 3 | funcinv.t | |- J = ( Inv ` E ) |
|
| 4 | funcinv.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | funcinv.x | |- ( ph -> X e. B ) |
|
| 6 | funcinv.y | |- ( ph -> Y e. B ) |
|
| 7 | funcinv.m | |- ( ph -> M ( X I Y ) N ) |
|
| 8 | eqid | |- ( Sect ` D ) = ( Sect ` D ) |
|
| 9 | eqid | |- ( Sect ` E ) = ( Sect ` E ) |
|
| 10 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 11 | 4 10 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 | funcrcl | |- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 14 | 13 | simpld | |- ( ph -> D e. Cat ) |
| 15 | 1 2 14 5 6 8 | isinv | |- ( ph -> ( M ( X I Y ) N <-> ( M ( X ( Sect ` D ) Y ) N /\ N ( Y ( Sect ` D ) X ) M ) ) ) |
| 16 | 7 15 | mpbid | |- ( ph -> ( M ( X ( Sect ` D ) Y ) N /\ N ( Y ( Sect ` D ) X ) M ) ) |
| 17 | 16 | simpld | |- ( ph -> M ( X ( Sect ` D ) Y ) N ) |
| 18 | 1 8 9 4 5 6 17 | funcsect | |- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` E ) ( F ` Y ) ) ( ( Y G X ) ` N ) ) |
| 19 | 16 | simprd | |- ( ph -> N ( Y ( Sect ` D ) X ) M ) |
| 20 | 1 8 9 4 6 5 19 | funcsect | |- ( ph -> ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) |
| 21 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 22 | 13 | simprd | |- ( ph -> E e. Cat ) |
| 23 | 1 21 4 | funcf1 | |- ( ph -> F : B --> ( Base ` E ) ) |
| 24 | 23 5 | ffvelcdmd | |- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
| 25 | 23 6 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
| 26 | 21 3 22 24 25 9 | isinv | |- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` E ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
| 27 | 18 20 26 | mpbir2and | |- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) |