This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the full function of F agrees with F . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fullfunfv | ⊢ ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( FullFun 𝐹 ‘ 𝑥 ) = ( FullFun 𝐹 ‘ 𝐴 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( FullFun 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 4 | df-fullfun | ⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) | |
| 5 | 4 | fveq1i | ⊢ ( FullFun 𝐹 ‘ 𝑥 ) = ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) |
| 6 | disjdif | ⊢ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ | |
| 7 | funpartfun | ⊢ Fun Funpart 𝐹 | |
| 8 | funfn | ⊢ ( Fun Funpart 𝐹 ↔ Funpart 𝐹 Fn dom Funpart 𝐹 ) | |
| 9 | 7 8 | mpbi | ⊢ Funpart 𝐹 Fn dom Funpart 𝐹 |
| 10 | 0ex | ⊢ ∅ ∈ V | |
| 11 | 10 | fconst | ⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } |
| 12 | ffn | ⊢ ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } → ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) |
| 14 | fvun1 | ⊢ ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ∧ ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ dom Funpart 𝐹 ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) | |
| 15 | 9 13 14 | mp3an12 | ⊢ ( ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
| 16 | 6 15 | mpan | ⊢ ( 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom Funpart 𝐹 ) ) | |
| 19 | 17 18 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ↔ ¬ 𝑥 ∈ dom Funpart 𝐹 ) |
| 20 | fvun2 | ⊢ ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ∧ ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) | |
| 21 | 9 13 20 | mp3an12 | ⊢ ( ( ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ∧ 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) |
| 22 | 6 21 | mpan | ⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) ) |
| 23 | 10 | fvconst2 | ⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ‘ 𝑥 ) = ∅ ) |
| 24 | 22 23 | eqtrd | ⊢ ( 𝑥 ∈ ( V ∖ dom Funpart 𝐹 ) → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ∅ ) |
| 25 | 19 24 | sylbir | ⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ∅ ) |
| 26 | ndmfv | ⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( Funpart 𝐹 ‘ 𝑥 ) = ∅ ) | |
| 27 | 25 26 | eqtr4d | ⊢ ( ¬ 𝑥 ∈ dom Funpart 𝐹 → ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) ) |
| 28 | 16 27 | pm2.61i | ⊢ ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) ‘ 𝑥 ) = ( Funpart 𝐹 ‘ 𝑥 ) |
| 29 | funpartfv | ⊢ ( Funpart 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) | |
| 30 | 5 28 29 | 3eqtri | ⊢ ( FullFun 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 31 | 3 30 | vtoclg | ⊢ ( 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 32 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 33 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 34 | 32 33 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 35 | 31 34 | pm2.61i | ⊢ ( FullFun 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |