This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the full function over F . This is a function with domain _V that always agrees with F for its value. (Contributed by Scott Fenton, 17-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fullfun | ⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | ⊢ 𝐹 | |
| 1 | 0 | cfullfn | ⊢ FullFun 𝐹 |
| 2 | 0 | cfunpart | ⊢ Funpart 𝐹 |
| 3 | cvv | ⊢ V | |
| 4 | 2 | cdm | ⊢ dom Funpart 𝐹 |
| 5 | 3 4 | cdif | ⊢ ( V ∖ dom Funpart 𝐹 ) |
| 6 | c0 | ⊢ ∅ | |
| 7 | 6 | csn | ⊢ { ∅ } |
| 8 | 5 7 | cxp | ⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) |
| 9 | 2 8 | cun | ⊢ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |
| 10 | 1 9 | wceq | ⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) |