This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartfv | ⊢ ( Funpart 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funpart | ⊢ Funpart 𝐹 = ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) | |
| 2 | 1 | fveq1i | ⊢ ( Funpart 𝐹 ‘ 𝐴 ) = ( ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ‘ 𝐴 ) |
| 3 | fvres | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 4 | nfvres | ⊢ ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ‘ 𝐴 ) = ∅ ) | |
| 5 | funpartlem | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) | |
| 6 | eusn | ⊢ ( ∃! 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ ∃ 𝑥 ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) | |
| 7 | 5 6 | bitr4i | ⊢ ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃! 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) |
| 8 | elimasng | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) | |
| 9 | 8 | elvd | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) ) |
| 10 | df-br | ⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) | |
| 11 | 9 10 | bitr4di | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝐴 𝐹 𝑥 ) ) |
| 12 | 11 | eubidv | ⊢ ( 𝐴 ∈ V → ( ∃! 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
| 13 | 7 12 | bitrid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
| 14 | 13 | notbid | ⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ↔ ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
| 15 | tz6.12-2 | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 16 | 14 15 | biimtrdi | ⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 17 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 18 | 17 | a1d | ⊢ ( ¬ 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 19 | 16 18 | pm2.61i | ⊢ ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 20 | 4 19 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) → ( ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 21 | 3 20 | pm2.61i | ⊢ ( ( 𝐹 ↾ dom ( ( Image 𝐹 ∘ Singleton ) ∩ ( V × Singletons ) ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |
| 22 | 2 21 | eqtri | ⊢ ( Funpart 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) |