This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the full function of F agrees with F . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fullfunfv | |- ( FullFun F ` A ) = ( F ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = A -> ( FullFun F ` x ) = ( FullFun F ` A ) ) |
|
| 2 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = A -> ( ( FullFun F ` x ) = ( F ` x ) <-> ( FullFun F ` A ) = ( F ` A ) ) ) |
| 4 | df-fullfun | |- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
|
| 5 | 4 | fveq1i | |- ( FullFun F ` x ) = ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) |
| 6 | disjdif | |- ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) |
|
| 7 | funpartfun | |- Fun Funpart F |
|
| 8 | funfn | |- ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) |
|
| 9 | 7 8 | mpbi | |- Funpart F Fn dom Funpart F |
| 10 | 0ex | |- (/) e. _V |
|
| 11 | 10 | fconst | |- ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } |
| 12 | ffn | |- ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) |
| 14 | fvun1 | |- ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
|
| 15 | 9 13 14 | mp3an12 | |- ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
| 16 | 6 15 | mpan | |- ( x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | eldif | |- ( x e. ( _V \ dom Funpart F ) <-> ( x e. _V /\ -. x e. dom Funpart F ) ) |
|
| 19 | 17 18 | mpbiran | |- ( x e. ( _V \ dom Funpart F ) <-> -. x e. dom Funpart F ) |
| 20 | fvun2 | |- ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) /\ ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
|
| 21 | 9 13 20 | mp3an12 | |- ( ( ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) /\ x e. ( _V \ dom Funpart F ) ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
| 22 | 6 21 | mpan | |- ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) ) |
| 23 | 10 | fvconst2 | |- ( x e. ( _V \ dom Funpart F ) -> ( ( ( _V \ dom Funpart F ) X. { (/) } ) ` x ) = (/) ) |
| 24 | 22 23 | eqtrd | |- ( x e. ( _V \ dom Funpart F ) -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) |
| 25 | 19 24 | sylbir | |- ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = (/) ) |
| 26 | ndmfv | |- ( -. x e. dom Funpart F -> ( Funpart F ` x ) = (/) ) |
|
| 27 | 25 26 | eqtr4d | |- ( -. x e. dom Funpart F -> ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) ) |
| 28 | 16 27 | pm2.61i | |- ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) ` x ) = ( Funpart F ` x ) |
| 29 | funpartfv | |- ( Funpart F ` x ) = ( F ` x ) |
|
| 30 | 5 28 29 | 3eqtri | |- ( FullFun F ` x ) = ( F ` x ) |
| 31 | 3 30 | vtoclg | |- ( A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) |
| 32 | fvprc | |- ( -. A e. _V -> ( FullFun F ` A ) = (/) ) |
|
| 33 | fvprc | |- ( -. A e. _V -> ( F ` A ) = (/) ) |
|
| 34 | 32 33 | eqtr4d | |- ( -. A e. _V -> ( FullFun F ` A ) = ( F ` A ) ) |
| 35 | 31 34 | pm2.61i | |- ( FullFun F ` A ) = ( F ` A ) |