This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The full functional part of F is a function over _V . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fullfunfnv | ⊢ FullFun 𝐹 Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funpartfun | ⊢ Fun Funpart 𝐹 | |
| 2 | funfn | ⊢ ( Fun Funpart 𝐹 ↔ Funpart 𝐹 Fn dom Funpart 𝐹 ) | |
| 3 | 1 2 | mpbi | ⊢ Funpart 𝐹 Fn dom Funpart 𝐹 |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | fconst | ⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } |
| 6 | ffn | ⊢ ( ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) : ( V ∖ dom Funpart 𝐹 ) ⟶ { ∅ } → ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) |
| 8 | 3 7 | pm3.2i | ⊢ ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) |
| 9 | disjdif | ⊢ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ | |
| 10 | fnun | ⊢ ( ( ( Funpart 𝐹 Fn dom Funpart 𝐹 ∧ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) Fn ( V ∖ dom Funpart 𝐹 ) ) ∧ ( dom Funpart 𝐹 ∩ ( V ∖ dom Funpart 𝐹 ) ) = ∅ ) → ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) | |
| 11 | 8 9 10 | mp2an | ⊢ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
| 12 | df-fullfun | ⊢ FullFun 𝐹 = ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) | |
| 13 | 12 | fneq1i | ⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ) |
| 14 | unvdif | ⊢ ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) = V | |
| 15 | 14 | eqcomi | ⊢ V = ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) |
| 16 | 15 | fneq2i | ⊢ ( ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
| 17 | 13 16 | bitri | ⊢ ( FullFun 𝐹 Fn V ↔ ( Funpart 𝐹 ∪ ( ( V ∖ dom Funpart 𝐹 ) × { ∅ } ) ) Fn ( dom Funpart 𝐹 ∪ ( V ∖ dom Funpart 𝐹 ) ) ) |
| 18 | 11 17 | mpbir | ⊢ FullFun 𝐹 Fn V |