This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The full functional part of F is a function over _V . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fullfunfnv | |- FullFun F Fn _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funpartfun | |- Fun Funpart F |
|
| 2 | funfn | |- ( Fun Funpart F <-> Funpart F Fn dom Funpart F ) |
|
| 3 | 1 2 | mpbi | |- Funpart F Fn dom Funpart F |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 4 | fconst | |- ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } |
| 6 | ffn | |- ( ( ( _V \ dom Funpart F ) X. { (/) } ) : ( _V \ dom Funpart F ) --> { (/) } -> ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) |
| 8 | 3 7 | pm3.2i | |- ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) |
| 9 | disjdif | |- ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) |
|
| 10 | fnun | |- ( ( ( Funpart F Fn dom Funpart F /\ ( ( _V \ dom Funpart F ) X. { (/) } ) Fn ( _V \ dom Funpart F ) ) /\ ( dom Funpart F i^i ( _V \ dom Funpart F ) ) = (/) ) -> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
|
| 11 | 8 9 10 | mp2an | |- ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) |
| 12 | df-fullfun | |- FullFun F = ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) |
|
| 13 | 12 | fneq1i | |- ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V ) |
| 14 | unvdif | |- ( dom Funpart F u. ( _V \ dom Funpart F ) ) = _V |
|
| 15 | 14 | eqcomi | |- _V = ( dom Funpart F u. ( _V \ dom Funpart F ) ) |
| 16 | 15 | fneq2i | |- ( ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
| 17 | 13 16 | bitri | |- ( FullFun F Fn _V <-> ( Funpart F u. ( ( _V \ dom Funpart F ) X. { (/) } ) ) Fn ( dom Funpart F u. ( _V \ dom Funpart F ) ) ) |
| 18 | 11 17 | mpbir | |- FullFun F Fn _V |