This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppss.1 | ⊢ ( 𝜑 → 𝐹 ⊆ 𝐺 ) | |
| fsuppss.2 | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | ||
| Assertion | fsuppss | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppss.1 | ⊢ ( 𝜑 → 𝐹 ⊆ 𝐺 ) | |
| 2 | fsuppss.2 | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | |
| 3 | relfsupp | ⊢ Rel finSupp | |
| 4 | brrelex1 | ⊢ ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝐺 ∈ V ) | |
| 5 | 3 2 4 | sylancr | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 6 | 5 1 | ssexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 7 | brrelex2 | ⊢ ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝑍 ∈ V ) | |
| 8 | 3 2 7 | sylancr | ⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 9 | 2 | fsuppfund | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 10 | funss | ⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐺 → Fun 𝐹 ) ) | |
| 11 | 1 9 10 | sylc | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 12 | funsssuppss | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) | |
| 13 | 9 1 5 12 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| 14 | 6 8 11 2 13 | fsuppsssuppgd | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |