This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funsssuppss | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funss | ⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐺 → Fun 𝐹 ) ) | |
| 2 | 1 | impcom | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → Fun 𝐹 ) |
| 3 | 2 | funfnd | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 Fn dom 𝐹 ) |
| 4 | funfn | ⊢ ( Fun 𝐺 ↔ 𝐺 Fn dom 𝐺 ) | |
| 5 | 4 | biimpi | ⊢ ( Fun 𝐺 → 𝐺 Fn dom 𝐺 ) |
| 6 | 5 | adantr | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → 𝐺 Fn dom 𝐺 ) |
| 7 | 3 6 | jca | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
| 10 | dmss | ⊢ ( 𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺 ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 12 | 11 | adantr | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 13 | dmexg | ⊢ ( 𝐺 ∈ 𝑉 → dom 𝐺 ∈ V ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → dom 𝐺 ∈ V ) |
| 15 | 14 | adantr | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → dom 𝐺 ∈ V ) |
| 16 | simpr | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 17 | 12 15 16 | 3jca | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) |
| 18 | 9 17 | jca | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) ) |
| 19 | funssfv | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 20 | 19 | 3expa | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 21 | eqeq1 | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) | |
| 22 | 21 | biimpd | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 23 | 20 22 | syl | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 24 | 23 | ralrimiva | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 25 | 24 | 3adant3 | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 27 | suppfnss | ⊢ ( ( ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) | |
| 28 | 18 26 27 | sylc | ⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| 29 | 28 | expcom | ⊢ ( 𝑍 ∈ V → ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
| 30 | ssid | ⊢ ∅ ⊆ ∅ | |
| 31 | simpr | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 32 | supp0prc | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) | |
| 33 | 31 32 | nsyl5 | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) = ∅ ) |
| 34 | simpr | ⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 35 | supp0prc | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐺 supp 𝑍 ) = ∅ ) | |
| 36 | 34 35 | nsyl5 | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐺 supp 𝑍 ) = ∅ ) |
| 37 | 33 36 | sseq12d | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ ∅ ⊆ ∅ ) ) |
| 38 | 30 37 | mpbiri | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| 39 | 38 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
| 40 | 29 39 | pm2.61i | ⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |