This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 . (Contributed by SN, 26-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppssov1.s | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 ) | |
| fsuppssov1.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) | ||
| fsuppssov1.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) | ||
| fsuppssov1.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑅 ) | ||
| fsuppssov1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| Assertion | fsuppssov1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppssov1.s | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 ) | |
| 2 | fsuppssov1.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) | |
| 3 | fsuppssov1.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) | |
| 4 | fsuppssov1.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑅 ) | |
| 5 | fsuppssov1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 6 | relfsupp | ⊢ Rel finSupp | |
| 7 | 6 | brrelex1i | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ) |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ) |
| 9 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) : 𝐷 ⟶ 𝑉 ) |
| 10 | dmfex | ⊢ ( ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ∧ ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) : 𝐷 ⟶ 𝑉 ) → 𝐷 ∈ V ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 12 | 11 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
| 13 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ) |
| 15 | ssidd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) | |
| 16 | 6 | brrelex2i | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 → 𝑌 ∈ V ) |
| 17 | 1 16 | syl | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 18 | 15 2 3 4 17 | suppssov1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) |
| 19 | 12 5 14 1 18 | fsuppsssuppgd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) finSupp 𝑍 ) |