This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsuppfund.1 | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| Assertion | fsuppfund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppfund.1 | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 2 | fsuppimp | ⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝐹 finSupp 𝑍 → Fun 𝐹 ) |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |