This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994) (Proof shortened by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funss | ⊢ ( 𝐴 ⊆ 𝐵 → ( Fun 𝐵 → Fun 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss | ⊢ ( 𝐴 ⊆ 𝐵 → ( Rel 𝐵 → Rel 𝐴 ) ) | |
| 2 | coss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐴 ) ) | |
| 3 | cnvss | ⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) | |
| 4 | coss2 | ⊢ ( ◡ 𝐴 ⊆ ◡ 𝐵 → ( 𝐵 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) |
| 6 | 2 5 | sstrd | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) |
| 7 | sstr2 | ⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) → ( ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
| 9 | 1 8 | anim12d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( Rel 𝐵 ∧ ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I ) → ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) ) |
| 10 | df-fun | ⊢ ( Fun 𝐵 ↔ ( Rel 𝐵 ∧ ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I ) ) | |
| 11 | df-fun | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) | |
| 12 | 9 10 11 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( Fun 𝐵 → Fun 𝐴 ) ) |