This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplit1.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fsumsplit1.kd | ⊢ Ⅎ 𝑘 𝐷 | ||
| fsumsplit1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumsplit1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumsplit1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| fsumsplit1.bd | ⊢ ( 𝑘 = 𝐶 → 𝐵 = 𝐷 ) | ||
| Assertion | fsumsplit1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 + Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplit1.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fsumsplit1.kd | ⊢ Ⅎ 𝑘 𝐷 | |
| 3 | fsumsplit1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumsplit1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | fsumsplit1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 6 | fsumsplit1.bd | ⊢ ( 𝑘 = 𝐶 → 𝐵 = 𝐷 ) | |
| 7 | uncom | ⊢ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) ) |
| 9 | 5 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ 𝐴 ) |
| 10 | undif | ⊢ ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) |
| 12 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
| 13 | 8 11 12 | 3eqtrrd | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) |
| 14 | 13 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) 𝐵 ) |
| 15 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
| 17 | neldifsnd | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 ∖ { 𝐶 } ) ) | |
| 18 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝜑 ) | |
| 19 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) → 𝑘 ∈ 𝐴 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝑘 ∈ 𝐴 ) |
| 21 | 18 20 4 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝐵 ∈ ℂ ) |
| 22 | 2 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝑘 = 𝐶 ) | |
| 24 | 23 6 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) |
| 25 | 1 22 5 24 | csbiedf | ⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 = 𝐷 ) |
| 26 | 25 | eqcomd | ⊢ ( 𝜑 → 𝐷 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) |
| 27 | 5 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) |
| 28 | nfcv | ⊢ Ⅎ 𝑘 𝐶 | |
| 29 | nfv | ⊢ Ⅎ 𝑘 𝐶 ∈ 𝐴 | |
| 30 | 1 29 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) |
| 31 | 28 | nfcsb1 | ⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 |
| 32 | nfcv | ⊢ Ⅎ 𝑘 ℂ | |
| 33 | 31 32 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 34 | 30 33 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 35 | eleq1 | ⊢ ( 𝑘 = 𝐶 → ( 𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 36 | 35 | anbi2d | ⊢ ( 𝑘 = 𝐶 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 37 | csbeq1a | ⊢ ( 𝑘 = 𝐶 → 𝐵 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑘 = 𝐶 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 39 | 36 38 | imbi12d | ⊢ ( 𝑘 = 𝐶 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 40 | 28 34 39 4 | vtoclgf | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 41 | 5 27 40 | sylc | ⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 42 | 26 41 | eqeltrd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 43 | 1 2 16 5 17 21 6 42 | fsumsplitsn | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) 𝐵 = ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 + 𝐷 ) ) |
| 44 | 1 16 21 | fsumclf | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ∈ ℂ ) |
| 45 | 44 42 | addcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 + 𝐷 ) = ( 𝐷 + Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| 46 | 14 43 45 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 + Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |