This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplitsn.ph | |- F/ k ph |
|
| fsumsplitsn.kd | |- F/_ k D |
||
| fsumsplitsn.a | |- ( ph -> A e. Fin ) |
||
| fsumsplitsn.b | |- ( ph -> B e. V ) |
||
| fsumsplitsn.ba | |- ( ph -> -. B e. A ) |
||
| fsumsplitsn.c | |- ( ( ph /\ k e. A ) -> C e. CC ) |
||
| fsumsplitsn.d | |- ( k = B -> C = D ) |
||
| fsumsplitsn.dcn | |- ( ph -> D e. CC ) |
||
| Assertion | fsumsplitsn | |- ( ph -> sum_ k e. ( A u. { B } ) C = ( sum_ k e. A C + D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplitsn.ph | |- F/ k ph |
|
| 2 | fsumsplitsn.kd | |- F/_ k D |
|
| 3 | fsumsplitsn.a | |- ( ph -> A e. Fin ) |
|
| 4 | fsumsplitsn.b | |- ( ph -> B e. V ) |
|
| 5 | fsumsplitsn.ba | |- ( ph -> -. B e. A ) |
|
| 6 | fsumsplitsn.c | |- ( ( ph /\ k e. A ) -> C e. CC ) |
|
| 7 | fsumsplitsn.d | |- ( k = B -> C = D ) |
|
| 8 | fsumsplitsn.dcn | |- ( ph -> D e. CC ) |
|
| 9 | disjsn | |- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
|
| 10 | 5 9 | sylibr | |- ( ph -> ( A i^i { B } ) = (/) ) |
| 11 | eqidd | |- ( ph -> ( A u. { B } ) = ( A u. { B } ) ) |
|
| 12 | snfi | |- { B } e. Fin |
|
| 13 | unfi | |- ( ( A e. Fin /\ { B } e. Fin ) -> ( A u. { B } ) e. Fin ) |
|
| 14 | 3 12 13 | sylancl | |- ( ph -> ( A u. { B } ) e. Fin ) |
| 15 | 6 | adantlr | |- ( ( ( ph /\ k e. ( A u. { B } ) ) /\ k e. A ) -> C e. CC ) |
| 16 | simpll | |- ( ( ( ph /\ k e. ( A u. { B } ) ) /\ -. k e. A ) -> ph ) |
|
| 17 | elunnel1 | |- ( ( k e. ( A u. { B } ) /\ -. k e. A ) -> k e. { B } ) |
|
| 18 | elsni | |- ( k e. { B } -> k = B ) |
|
| 19 | 17 18 | syl | |- ( ( k e. ( A u. { B } ) /\ -. k e. A ) -> k = B ) |
| 20 | 19 | adantll | |- ( ( ( ph /\ k e. ( A u. { B } ) ) /\ -. k e. A ) -> k = B ) |
| 21 | 7 | adantl | |- ( ( ph /\ k = B ) -> C = D ) |
| 22 | 8 | adantr | |- ( ( ph /\ k = B ) -> D e. CC ) |
| 23 | 21 22 | eqeltrd | |- ( ( ph /\ k = B ) -> C e. CC ) |
| 24 | 16 20 23 | syl2anc | |- ( ( ( ph /\ k e. ( A u. { B } ) ) /\ -. k e. A ) -> C e. CC ) |
| 25 | 15 24 | pm2.61dan | |- ( ( ph /\ k e. ( A u. { B } ) ) -> C e. CC ) |
| 26 | 1 10 11 14 25 | fsumsplitf | |- ( ph -> sum_ k e. ( A u. { B } ) C = ( sum_ k e. A C + sum_ k e. { B } C ) ) |
| 27 | 2 7 | sumsnf | |- ( ( B e. V /\ D e. CC ) -> sum_ k e. { B } C = D ) |
| 28 | 4 8 27 | syl2anc | |- ( ph -> sum_ k e. { B } C = D ) |
| 29 | 28 | oveq2d | |- ( ph -> ( sum_ k e. A C + sum_ k e. { B } C ) = ( sum_ k e. A C + D ) ) |
| 30 | 26 29 | eqtrd | |- ( ph -> sum_ k e. ( A u. { B } ) C = ( sum_ k e. A C + D ) ) |