This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcvg3.1 | |- Z = ( ZZ>= ` M ) |
|
| fsumcvg3.2 | |- ( ph -> M e. ZZ ) |
||
| fsumcvg3.3 | |- ( ph -> A e. Fin ) |
||
| fsumcvg3.4 | |- ( ph -> A C_ Z ) |
||
| fsumcvg3.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
||
| fsumcvg3.6 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsumcvg3 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcvg3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fsumcvg3.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | fsumcvg3.3 | |- ( ph -> A e. Fin ) |
|
| 4 | fsumcvg3.4 | |- ( ph -> A C_ Z ) |
|
| 5 | fsumcvg3.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| 6 | fsumcvg3.6 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 7 | sseq1 | |- ( A = (/) -> ( A C_ ( M ... n ) <-> (/) C_ ( M ... n ) ) ) |
|
| 8 | 7 | rexbidv | |- ( A = (/) -> ( E. n e. ( ZZ>= ` M ) A C_ ( M ... n ) <-> E. n e. ( ZZ>= ` M ) (/) C_ ( M ... n ) ) ) |
| 9 | 4 | adantr | |- ( ( ph /\ A =/= (/) ) -> A C_ Z ) |
| 10 | 9 1 | sseqtrdi | |- ( ( ph /\ A =/= (/) ) -> A C_ ( ZZ>= ` M ) ) |
| 11 | ltso | |- < Or RR |
|
| 12 | 3 | adantr | |- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
| 13 | simpr | |- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
|
| 14 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 15 | zssre | |- ZZ C_ RR |
|
| 16 | 14 15 | sstri | |- ( ZZ>= ` M ) C_ RR |
| 17 | 1 16 | eqsstri | |- Z C_ RR |
| 18 | 9 17 | sstrdi | |- ( ( ph /\ A =/= (/) ) -> A C_ RR ) |
| 19 | 12 13 18 | 3jca | |- ( ( ph /\ A =/= (/) ) -> ( A e. Fin /\ A =/= (/) /\ A C_ RR ) ) |
| 20 | fisupcl | |- ( ( < Or RR /\ ( A e. Fin /\ A =/= (/) /\ A C_ RR ) ) -> sup ( A , RR , < ) e. A ) |
|
| 21 | 11 19 20 | sylancr | |- ( ( ph /\ A =/= (/) ) -> sup ( A , RR , < ) e. A ) |
| 22 | 10 21 | sseldd | |- ( ( ph /\ A =/= (/) ) -> sup ( A , RR , < ) e. ( ZZ>= ` M ) ) |
| 23 | fimaxre2 | |- ( ( A C_ RR /\ A e. Fin ) -> E. k e. RR A. n e. A n <_ k ) |
|
| 24 | 18 12 23 | syl2anc | |- ( ( ph /\ A =/= (/) ) -> E. k e. RR A. n e. A n <_ k ) |
| 25 | 18 13 24 | 3jca | |- ( ( ph /\ A =/= (/) ) -> ( A C_ RR /\ A =/= (/) /\ E. k e. RR A. n e. A n <_ k ) ) |
| 26 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. k e. RR A. n e. A n <_ k ) /\ k e. A ) -> k <_ sup ( A , RR , < ) ) |
|
| 27 | 25 26 | sylan | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> k <_ sup ( A , RR , < ) ) |
| 28 | 10 | sselda | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> k e. ( ZZ>= ` M ) ) |
| 29 | 14 22 | sselid | |- ( ( ph /\ A =/= (/) ) -> sup ( A , RR , < ) e. ZZ ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> sup ( A , RR , < ) e. ZZ ) |
| 31 | elfz5 | |- ( ( k e. ( ZZ>= ` M ) /\ sup ( A , RR , < ) e. ZZ ) -> ( k e. ( M ... sup ( A , RR , < ) ) <-> k <_ sup ( A , RR , < ) ) ) |
|
| 32 | 28 30 31 | syl2anc | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> ( k e. ( M ... sup ( A , RR , < ) ) <-> k <_ sup ( A , RR , < ) ) ) |
| 33 | 27 32 | mpbird | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> k e. ( M ... sup ( A , RR , < ) ) ) |
| 34 | 33 | ex | |- ( ( ph /\ A =/= (/) ) -> ( k e. A -> k e. ( M ... sup ( A , RR , < ) ) ) ) |
| 35 | 34 | ssrdv | |- ( ( ph /\ A =/= (/) ) -> A C_ ( M ... sup ( A , RR , < ) ) ) |
| 36 | oveq2 | |- ( n = sup ( A , RR , < ) -> ( M ... n ) = ( M ... sup ( A , RR , < ) ) ) |
|
| 37 | 36 | sseq2d | |- ( n = sup ( A , RR , < ) -> ( A C_ ( M ... n ) <-> A C_ ( M ... sup ( A , RR , < ) ) ) ) |
| 38 | 37 | rspcev | |- ( ( sup ( A , RR , < ) e. ( ZZ>= ` M ) /\ A C_ ( M ... sup ( A , RR , < ) ) ) -> E. n e. ( ZZ>= ` M ) A C_ ( M ... n ) ) |
| 39 | 22 35 38 | syl2anc | |- ( ( ph /\ A =/= (/) ) -> E. n e. ( ZZ>= ` M ) A C_ ( M ... n ) ) |
| 40 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 41 | 2 40 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 42 | 0ss | |- (/) C_ ( M ... M ) |
|
| 43 | oveq2 | |- ( n = M -> ( M ... n ) = ( M ... M ) ) |
|
| 44 | 43 | sseq2d | |- ( n = M -> ( (/) C_ ( M ... n ) <-> (/) C_ ( M ... M ) ) ) |
| 45 | 44 | rspcev | |- ( ( M e. ( ZZ>= ` M ) /\ (/) C_ ( M ... M ) ) -> E. n e. ( ZZ>= ` M ) (/) C_ ( M ... n ) ) |
| 46 | 41 42 45 | sylancl | |- ( ph -> E. n e. ( ZZ>= ` M ) (/) C_ ( M ... n ) ) |
| 47 | 8 39 46 | pm2.61ne | |- ( ph -> E. n e. ( ZZ>= ` M ) A C_ ( M ... n ) ) |
| 48 | 1 | eleq2i | |- ( k e. Z <-> k e. ( ZZ>= ` M ) ) |
| 49 | 48 5 | sylan2br | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 50 | 49 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 51 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 52 | 6 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) /\ k e. A ) -> B e. CC ) |
| 53 | simprr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) -> A C_ ( M ... n ) ) |
|
| 54 | 50 51 52 53 | fsumcvg2 | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` n ) ) |
| 55 | climrel | |- Rel ~~> |
|
| 56 | 55 | releldmi | |- ( seq M ( + , F ) ~~> ( seq M ( + , F ) ` n ) -> seq M ( + , F ) e. dom ~~> ) |
| 57 | 54 56 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ A C_ ( M ... n ) ) ) -> seq M ( + , F ) e. dom ~~> ) |
| 58 | 47 57 | rexlimddv | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |