This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsers.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| fsumsers.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| fsumsers.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumsers.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | ||
| Assertion | fsumcvg2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsers.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | fsumsers.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | fsumsers.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | fsumsers.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑚 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) | |
| 6 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 8 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 9 | 6 7 8 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) |
| 10 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) | |
| 11 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 12 | 10 11 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 13 | 5 9 12 | cbvmpt | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑚 ∈ ℤ ↦ if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 14 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 15 | 7 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 16 | 11 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 17 | 15 16 | rspc | ⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 18 | 14 17 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 19 | 13 18 2 4 | fsumcvg | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ⇝ ( seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ‘ 𝑁 ) ) |
| 20 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 23 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 25 | 24 3 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 26 | 25 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) ) |
| 27 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) | |
| 28 | 0cn | ⊢ 0 ∈ ℂ | |
| 29 | 27 28 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 30 | 26 29 | pm2.61d1 | ⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) |
| 31 | eqid | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 32 | 31 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℂ ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 33 | 22 30 32 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 34 | 1 33 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ) |
| 35 | 34 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ) |
| 36 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) | |
| 37 | 36 | nfeq2 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) |
| 38 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 39 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) | |
| 40 | 38 39 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) ) |
| 41 | 37 40 | rspc | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑘 ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) ) |
| 42 | 35 41 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑛 ) ) |
| 43 | 21 42 | seqfeq | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 44 | 43 | fveq1d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) ‘ 𝑁 ) ) |
| 45 | 19 43 44 | 3brtr4d | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |