This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a nonempty set A into a proper class B is not a set. If one of the preconditions is not fufilled, then { f | f : A --> B } is a set, see fsetdmprc0 for A e/V , fset0 for A = (/) , and fsetex for B e. V , see also fsetexb . (Contributed by AV, 14-Sep-2024) (Proof shortened by BJ, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetprcnex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐴 ) | |
| 2 | feq1 | ⊢ ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) ) | |
| 3 | 2 | cbvabv | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = { 𝑚 ∣ 𝑚 : 𝐴 ⟶ 𝐵 } |
| 4 | fveq1 | ⊢ ( 𝑔 = 𝑛 → ( 𝑔 ‘ 𝑎 ) = ( 𝑛 ‘ 𝑎 ) ) | |
| 5 | 4 | cbvmptv | ⊢ ( 𝑔 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↦ ( 𝑔 ‘ 𝑎 ) ) = ( 𝑛 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↦ ( 𝑛 ‘ 𝑎 ) ) |
| 6 | 3 5 | fsetfocdm | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑔 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↦ ( 𝑔 ‘ 𝑎 ) ) : { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } –onto→ 𝐵 ) |
| 7 | focdmex | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → ( ( 𝑔 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↦ ( 𝑔 ‘ 𝑎 ) ) : { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } –onto→ 𝐵 → 𝐵 ∈ V ) ) | |
| 8 | 6 7 | syl5com | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) → ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → 𝐵 ∈ V ) ) |
| 9 | 8 | nelcon3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 10 | 9 | expcom | ⊢ ( 𝑎 ∈ 𝐴 → ( 𝐴 ∈ 𝑉 → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ 𝐴 → ( 𝐴 ∈ 𝑉 → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ∈ 𝑉 → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) ) |
| 13 | 12 | impcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |