This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsetfocdm.f | ⊢ 𝐹 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } | |
| fsetfocdm.s | ⊢ 𝑆 = ( 𝑔 ∈ 𝐹 ↦ ( 𝑔 ‘ 𝑋 ) ) | ||
| Assertion | fsetfocdm | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑆 : 𝐹 –onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetfocdm.f | ⊢ 𝐹 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } | |
| 2 | fsetfocdm.s | ⊢ 𝑆 = ( 𝑔 ∈ 𝐹 ↦ ( 𝑔 ‘ 𝑋 ) ) | |
| 3 | 1 2 | fsetfcdm | ⊢ ( 𝑋 ∈ 𝐴 → 𝑆 : 𝐹 ⟶ 𝐵 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑆 : 𝐹 ⟶ 𝐵 ) |
| 5 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑔 ∈ 𝐵 ) | |
| 6 | 5 | fmpttd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) : 𝐴 ⟶ 𝐵 ) |
| 7 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) | |
| 8 | 7 | mptexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ∈ V ) |
| 9 | feq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) : 𝐴 ⟶ 𝐵 ) ) | |
| 10 | 9 1 | elab2g | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ∈ 𝐹 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) : 𝐴 ⟶ 𝐵 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ∈ 𝐹 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) : 𝐴 ⟶ 𝐵 ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ∈ 𝐹 ) |
| 13 | fveq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑋 ) = ( 𝑓 ‘ 𝑋 ) ) | |
| 14 | 13 | cbvmptv | ⊢ ( 𝑔 ∈ 𝐹 ↦ ( 𝑔 ‘ 𝑋 ) ) = ( 𝑓 ∈ 𝐹 ↦ ( 𝑓 ‘ 𝑋 ) ) |
| 15 | 2 14 | eqtri | ⊢ 𝑆 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑓 ‘ 𝑋 ) ) |
| 16 | fveq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) → ( 𝑓 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ‘ 𝑋 ) ) | |
| 17 | fvexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ‘ 𝑋 ) ∈ V ) | |
| 18 | 15 16 12 17 | fvmptd3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑆 ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ‘ 𝑋 ) ) |
| 19 | eqidd | ⊢ ( 𝑥 = 𝑋 → 𝑔 = 𝑔 ) | |
| 20 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) | |
| 21 | vex | ⊢ 𝑔 ∈ V | |
| 22 | 19 20 21 | fvmpt | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ‘ 𝑋 ) = 𝑔 ) |
| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ‘ 𝑋 ) = 𝑔 ) |
| 24 | 18 23 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑆 ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ) = 𝑔 ) |
| 25 | fveq2 | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) → ( 𝑆 ‘ ℎ ) = ( 𝑆 ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ) ) | |
| 26 | 25 | eqcomd | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) → ( 𝑆 ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ) = ( 𝑆 ‘ ℎ ) ) |
| 27 | 24 26 | sylan9req | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) ∧ ℎ = ( 𝑥 ∈ 𝐴 ↦ 𝑔 ) ) → 𝑔 = ( 𝑆 ‘ ℎ ) ) |
| 28 | 12 27 | rspcedeq2vd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ∃ ℎ ∈ 𝐹 𝑔 = ( 𝑆 ‘ ℎ ) ) |
| 29 | 28 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐹 𝑔 = ( 𝑆 ‘ ℎ ) ) |
| 30 | dffo3 | ⊢ ( 𝑆 : 𝐹 –onto→ 𝐵 ↔ ( 𝑆 : 𝐹 ⟶ 𝐵 ∧ ∀ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐹 𝑔 = ( 𝑆 ‘ ℎ ) ) ) | |
| 31 | 4 29 30 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑆 : 𝐹 –onto→ 𝐵 ) |