This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a nonempty set A into a class B is a set iff B is a set . (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetcdmex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∈ V ↔ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetex | ⊢ ( 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
| 2 | fsetprcnex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) | |
| 3 | 2 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 4 | df-nel | ⊢ ( 𝐵 ∉ V ↔ ¬ 𝐵 ∈ V ) | |
| 5 | df-nel | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ↔ ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
| 6 | 3 4 5 | 3imtr3g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ¬ 𝐵 ∈ V → ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) ) |
| 7 | 6 | con4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → 𝐵 ∈ V ) ) |
| 8 | 1 7 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∈ V ↔ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) ) |