This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a class A into a class B is a set iff B is a set or A is not a set or A is empty. (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetexb | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ↔ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran | ⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ↔ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∧ ¬ 𝐵 ∈ V ) ) | |
| 2 | df-nel | ⊢ ( 𝐵 ∉ V ↔ ¬ 𝐵 ∈ V ) | |
| 3 | ioran | ⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ↔ ( ¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅ ) ) | |
| 4 | nnel | ⊢ ( ¬ 𝐴 ∉ V ↔ 𝐴 ∈ V ) | |
| 5 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 6 | 5 | bicomi | ⊢ ( ¬ 𝐴 = ∅ ↔ 𝐴 ≠ ∅ ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( ¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅ ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ) |
| 8 | 3 7 | bitri | ⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ) |
| 9 | fsetprcnex | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) | |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 11 | 8 10 | sylbi | ⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 12 | 2 11 | biimtrrid | ⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) → ( ¬ 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 13 | 12 | imp | ⊢ ( ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∧ ¬ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| 14 | 1 13 | sylbi | ⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| 15 | df-nel | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ↔ ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
| 16 | 14 15 | sylib | ⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) → ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 17 | 16 | con4i | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ) |
| 18 | df-3or | ⊢ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ↔ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ) |
| 20 | fsetdmprc0 | ⊢ ( 𝐴 ∉ V → { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ ) | |
| 21 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 22 | 21 | ss2abi | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 Fn 𝐴 } |
| 23 | sseq0 | ⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 Fn 𝐴 } ∧ { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) | |
| 24 | 22 23 | mpan | ⊢ ( { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) |
| 25 | 0ex | ⊢ ∅ ∈ V | |
| 26 | 24 25 | eqeltrdi | ⊢ ( { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 27 | 20 26 | syl | ⊢ ( 𝐴 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 28 | feq2 | ⊢ ( 𝐴 = ∅ → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) | |
| 29 | 28 | abbidv | ⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = { 𝑓 ∣ 𝑓 : ∅ ⟶ 𝐵 } ) |
| 30 | fset0 | ⊢ { 𝑓 ∣ 𝑓 : ∅ ⟶ 𝐵 } = { ∅ } | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = { ∅ } ) |
| 32 | p0ex | ⊢ { ∅ } ∈ V | |
| 33 | 31 32 | eqeltrdi | ⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 34 | fsetex | ⊢ ( 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
| 35 | 27 33 34 | 3jaoi | ⊢ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 36 | 19 35 | impbii | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ↔ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ) |