This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a nonempty set A into a proper class B is not a set. If one of the preconditions is not fufilled, then { f | f : A --> B } is a set, see fsetdmprc0 for A e/V , fset0 for A = (/) , and fsetex for B e. V , see also fsetexb . (Contributed by AV, 14-Sep-2024) (Proof shortened by BJ, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetprcnex | |- ( ( ( A e. V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. a a e. A ) |
|
| 2 | feq1 | |- ( f = m -> ( f : A --> B <-> m : A --> B ) ) |
|
| 3 | 2 | cbvabv | |- { f | f : A --> B } = { m | m : A --> B } |
| 4 | fveq1 | |- ( g = n -> ( g ` a ) = ( n ` a ) ) |
|
| 5 | 4 | cbvmptv | |- ( g e. { f | f : A --> B } |-> ( g ` a ) ) = ( n e. { f | f : A --> B } |-> ( n ` a ) ) |
| 6 | 3 5 | fsetfocdm | |- ( ( A e. V /\ a e. A ) -> ( g e. { f | f : A --> B } |-> ( g ` a ) ) : { f | f : A --> B } -onto-> B ) |
| 7 | focdmex | |- ( { f | f : A --> B } e. _V -> ( ( g e. { f | f : A --> B } |-> ( g ` a ) ) : { f | f : A --> B } -onto-> B -> B e. _V ) ) |
|
| 8 | 6 7 | syl5com | |- ( ( A e. V /\ a e. A ) -> ( { f | f : A --> B } e. _V -> B e. _V ) ) |
| 9 | 8 | nelcon3d | |- ( ( A e. V /\ a e. A ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
| 10 | 9 | expcom | |- ( a e. A -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
| 11 | 10 | exlimiv | |- ( E. a a e. A -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
| 12 | 1 11 | sylbi | |- ( A =/= (/) -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
| 13 | 12 | impcom | |- ( ( A e. V /\ A =/= (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
| 14 | 13 | imp | |- ( ( ( A e. V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |