This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsetfocdm.f | |- F = { f | f : A --> B } |
|
| fsetfocdm.s | |- S = ( g e. F |-> ( g ` X ) ) |
||
| Assertion | fsetfocdm | |- ( ( A e. V /\ X e. A ) -> S : F -onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetfocdm.f | |- F = { f | f : A --> B } |
|
| 2 | fsetfocdm.s | |- S = ( g e. F |-> ( g ` X ) ) |
|
| 3 | 1 2 | fsetfcdm | |- ( X e. A -> S : F --> B ) |
| 4 | 3 | adantl | |- ( ( A e. V /\ X e. A ) -> S : F --> B ) |
| 5 | simplr | |- ( ( ( ( A e. V /\ X e. A ) /\ g e. B ) /\ x e. A ) -> g e. B ) |
|
| 6 | 5 | fmpttd | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( x e. A |-> g ) : A --> B ) |
| 7 | simpll | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> A e. V ) |
|
| 8 | 7 | mptexd | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( x e. A |-> g ) e. _V ) |
| 9 | feq1 | |- ( f = ( x e. A |-> g ) -> ( f : A --> B <-> ( x e. A |-> g ) : A --> B ) ) |
|
| 10 | 9 1 | elab2g | |- ( ( x e. A |-> g ) e. _V -> ( ( x e. A |-> g ) e. F <-> ( x e. A |-> g ) : A --> B ) ) |
| 11 | 8 10 | syl | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( ( x e. A |-> g ) e. F <-> ( x e. A |-> g ) : A --> B ) ) |
| 12 | 6 11 | mpbird | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( x e. A |-> g ) e. F ) |
| 13 | fveq1 | |- ( g = f -> ( g ` X ) = ( f ` X ) ) |
|
| 14 | 13 | cbvmptv | |- ( g e. F |-> ( g ` X ) ) = ( f e. F |-> ( f ` X ) ) |
| 15 | 2 14 | eqtri | |- S = ( f e. F |-> ( f ` X ) ) |
| 16 | fveq1 | |- ( f = ( x e. A |-> g ) -> ( f ` X ) = ( ( x e. A |-> g ) ` X ) ) |
|
| 17 | fvexd | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( ( x e. A |-> g ) ` X ) e. _V ) |
|
| 18 | 15 16 12 17 | fvmptd3 | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( S ` ( x e. A |-> g ) ) = ( ( x e. A |-> g ) ` X ) ) |
| 19 | eqidd | |- ( x = X -> g = g ) |
|
| 20 | eqid | |- ( x e. A |-> g ) = ( x e. A |-> g ) |
|
| 21 | vex | |- g e. _V |
|
| 22 | 19 20 21 | fvmpt | |- ( X e. A -> ( ( x e. A |-> g ) ` X ) = g ) |
| 23 | 22 | ad2antlr | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( ( x e. A |-> g ) ` X ) = g ) |
| 24 | 18 23 | eqtrd | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> ( S ` ( x e. A |-> g ) ) = g ) |
| 25 | fveq2 | |- ( h = ( x e. A |-> g ) -> ( S ` h ) = ( S ` ( x e. A |-> g ) ) ) |
|
| 26 | 25 | eqcomd | |- ( h = ( x e. A |-> g ) -> ( S ` ( x e. A |-> g ) ) = ( S ` h ) ) |
| 27 | 24 26 | sylan9req | |- ( ( ( ( A e. V /\ X e. A ) /\ g e. B ) /\ h = ( x e. A |-> g ) ) -> g = ( S ` h ) ) |
| 28 | 12 27 | rspcedeq2vd | |- ( ( ( A e. V /\ X e. A ) /\ g e. B ) -> E. h e. F g = ( S ` h ) ) |
| 29 | 28 | ralrimiva | |- ( ( A e. V /\ X e. A ) -> A. g e. B E. h e. F g = ( S ` h ) ) |
| 30 | dffo3 | |- ( S : F -onto-> B <-> ( S : F --> B /\ A. g e. B E. h e. F g = ( S ` h ) ) ) |
|
| 31 | 4 29 30 | sylanbrc | |- ( ( A e. V /\ X e. A ) -> S : F -onto-> B ) |