This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003) (Revised by Scott Fenton, 2-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frsucmpt.1 | |- F/_ x A |
|
| frsucmpt.2 | |- F/_ x B |
||
| frsucmpt.3 | |- F/_ x D |
||
| frsucmpt.4 | |- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
||
| frsucmpt.5 | |- ( x = ( F ` B ) -> C = D ) |
||
| Assertion | frsucmpt | |- ( ( B e. _om /\ D e. V ) -> ( F ` suc B ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt.1 | |- F/_ x A |
|
| 2 | frsucmpt.2 | |- F/_ x B |
|
| 3 | frsucmpt.3 | |- F/_ x D |
|
| 4 | frsucmpt.4 | |- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
|
| 5 | frsucmpt.5 | |- ( x = ( F ` B ) -> C = D ) |
|
| 6 | frsuc | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) ) |
|
| 7 | 4 | fveq1i | |- ( F ` suc B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) |
| 8 | 4 | fveq1i | |- ( F ` B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) |
| 9 | 8 | fveq2i | |- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) |
| 10 | 6 7 9 | 3eqtr4g | |- ( B e. _om -> ( F ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 11 | fvex | |- ( F ` B ) e. _V |
|
| 12 | nfmpt1 | |- F/_ x ( x e. _V |-> C ) |
|
| 13 | 12 1 | nfrdg | |- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 14 | nfcv | |- F/_ x _om |
|
| 15 | 13 14 | nfres | |- F/_ x ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 16 | 4 15 | nfcxfr | |- F/_ x F |
| 17 | 16 2 | nffv | |- F/_ x ( F ` B ) |
| 18 | eqid | |- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
|
| 19 | 17 3 5 18 | fvmptf | |- ( ( ( F ` B ) e. _V /\ D e. V ) -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 20 | 11 19 | mpan | |- ( D e. V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 21 | 10 20 | sylan9eq | |- ( ( B e. _om /\ D e. V ) -> ( F ` suc B ) = D ) |