This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem9.1 | ||
| frrlem9.2 | |||
| frrlem9.3 | |||
| Assertion | frrlem9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem9.1 | ||
| 2 | frrlem9.2 | ||
| 3 | frrlem9.3 | ||
| 4 | eluni2 | ||
| 5 | df-br | ||
| 6 | 1 2 | frrlem5 | |
| 7 | 6 | eleq2i | |
| 8 | 5 7 | bitri | |
| 9 | df-br | ||
| 10 | 9 | rexbii | |
| 11 | 4 8 10 | 3bitr4i | |
| 12 | eluni2 | ||
| 13 | df-br | ||
| 14 | 6 | eleq2i | |
| 15 | 13 14 | bitri | |
| 16 | df-br | ||
| 17 | 16 | rexbii | |
| 18 | 12 15 17 | 3bitr4i | |
| 19 | 11 18 | anbi12i | |
| 20 | reeanv | ||
| 21 | 19 20 | bitr4i | |
| 22 | 3 | rexlimdvva | |
| 23 | 21 22 | biimtrid | |
| 24 | 23 | alrimiv | |
| 25 | 24 | alrimivv | |
| 26 | 1 2 | frrlem6 | |
| 27 | dffun2 | ||
| 28 | 26 27 | mpbiran | |
| 29 | 25 28 | sylibr |