This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of general well-founded recursion, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frr.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | frr2 | |- ( ( ( R Fr A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frr.1 | |- F = frecs ( R , A , G ) |
|
| 2 | 1 | frr1 | |- ( ( R Fr A /\ R Se A ) -> F Fn A ) |
| 3 | 2 | fndmd | |- ( ( R Fr A /\ R Se A ) -> dom F = A ) |
| 4 | 3 | eleq2d | |- ( ( R Fr A /\ R Se A ) -> ( X e. dom F <-> X e. A ) ) |
| 5 | 4 | pm5.32i | |- ( ( ( R Fr A /\ R Se A ) /\ X e. dom F ) <-> ( ( R Fr A /\ R Se A ) /\ X e. A ) ) |
| 6 | fveq2 | |- ( y = X -> ( F ` y ) = ( F ` X ) ) |
|
| 7 | id | |- ( y = X -> y = X ) |
|
| 8 | predeq3 | |- ( y = X -> Pred ( R , A , y ) = Pred ( R , A , X ) ) |
|
| 9 | 8 | reseq2d | |- ( y = X -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , X ) ) ) |
| 10 | 7 9 | oveq12d | |- ( y = X -> ( y G ( F |` Pred ( R , A , y ) ) ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| 11 | 6 10 | eqeq12d | |- ( y = X -> ( ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) <-> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
| 12 | 11 | imbi2d | |- ( y = X -> ( ( ( R Fr A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) <-> ( ( R Fr A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) ) |
| 13 | eqid | |- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
|
| 14 | 13 | frrlem1 | |- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
| 15 | 14 1 | frrlem15 | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } /\ h e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 16 | 14 1 15 | frrlem10 | |- ( ( ( R Fr A /\ R Se A ) /\ y e. dom F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) |
| 17 | 16 | expcom | |- ( y e. dom F -> ( ( R Fr A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) |
| 18 | 12 17 | vtoclga | |- ( X e. dom F -> ( ( R Fr A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
| 19 | 18 | impcom | |- ( ( ( R Fr A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| 20 | 5 19 | sylbir | |- ( ( ( R Fr A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |