This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of general well-founded recursion, part three. Finally, we show that F is unique. We do this by showing that any function H with the same properties we proved of F in frr1 and frr2 is identical to F . (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | frr3 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | simpl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) | |
| 3 | 1 | frr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 4 | 1 | frr2 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 5 | 4 | ralrimiva | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 6 | 3 5 | jca | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 8 | simpr | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) | |
| 9 | frr3g | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 ) | |
| 10 | 2 7 8 9 | syl3anc | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 ) |