This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The principle of well-founded induction over a partial order. This theorem is a version of frind that does not require the axiom of infinity and can be used to prove wfi and tfi . (Contributed by Scott Fenton, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frpoind | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) | |
| 2 | 1 | necon3bbii | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
| 3 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 4 | frpomin2 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) | |
| 5 | eldif | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) |
| 7 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) ) | |
| 8 | indif2 | ⊢ ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 ) | |
| 9 | df-pred | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) | |
| 10 | incom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) | |
| 11 | 9 10 | eqtri | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ ( 𝐴 ∖ 𝐵 ) ) |
| 12 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) | |
| 13 | incom | ⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) | |
| 14 | 12 13 | eqtri | ⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) = ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) |
| 15 | 14 | difeq1i | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ( ( ( ◡ 𝑅 “ { 𝑦 } ) ∩ 𝐴 ) ∖ 𝐵 ) |
| 16 | 8 11 15 | 3eqtr4i | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) |
| 17 | 16 | eqeq1i | ⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ ) |
| 18 | ssdif0 | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∖ 𝐵 ) = ∅ ) | |
| 19 | 17 18 | bitr4i | ⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
| 20 | 19 | anbi1ci | ⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 21 | 20 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ¬ 𝑦 ∈ 𝐵 ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 22 | 6 7 21 | 3bitri | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 23 | 22 | rexbii2 | ⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
| 24 | rexanali | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) | |
| 25 | 23 24 | bitri | ⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑦 ) = ∅ ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 26 | 4 25 | sylib | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) ) → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 28 | 3 27 | mpani | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 29 | 2 28 | biimtrid | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ¬ 𝐴 ⊆ 𝐵 → ¬ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) |
| 30 | 29 | con4d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 32 | 31 | adantrl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 ⊆ 𝐵 ) |
| 33 | simprl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐵 ⊆ 𝐴 ) | |
| 34 | 32 33 | eqssd | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |