This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frpomin2 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑥 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpomin | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | dfpred3 | ⊢ Pred ( 𝑅 , 𝐵 , 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } |
| 4 | 3 | eqeq1i | ⊢ ( Pred ( 𝑅 , 𝐵 , 𝑥 ) = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ) |
| 5 | rabeq0 | ⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) | |
| 6 | 4 5 | bitri | ⊢ ( Pred ( 𝑅 , 𝐵 , 𝑥 ) = ∅ ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 8 | 1 7 | sylibr | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑥 ) = ∅ ) |