This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction Schema (variant). If a property passes from all elements less than y of a well-founded set-like partial order class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frpoinsg.1 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | |
| Assertion | frpoinsg | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpoinsg.1 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | |
| 2 | dfss3 | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 4 | 3 | elrabsf | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → [ 𝑧 / 𝑦 ] 𝜑 ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) |
| 7 | 2 6 | sylbi | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑤 ) | |
| 10 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 | |
| 11 | 9 10 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 |
| 12 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 | |
| 13 | 11 12 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) |
| 14 | 8 13 | nfim | ⊢ Ⅎ 𝑦 ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 15 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) ) ) |
| 17 | predeq3 | ⊢ ( 𝑦 = 𝑤 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑤 ) ) | |
| 18 | 17 | raleqdv | ⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 19 | sbceq1a | ⊢ ( 𝑦 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 20 | 18 19 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ↔ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 21 | 16 20 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) ↔ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) ) |
| 22 | 14 21 1 | chvarfv | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 23 | 7 22 | syl5 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 24 | simpr | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) | |
| 25 | 23 24 | jctild | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 26 | 3 | elrabsf | ⊢ ( 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 27 | 25 26 | imbitrrdi | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 28 | 27 | ralrimiva | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑤 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 29 | ssrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 | |
| 30 | 28 29 | jctil | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) ) |
| 31 | frpoind | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) ) → 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) | |
| 32 | 30 31 | mpdan | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
| 33 | rabid2 | ⊢ ( 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝐴 𝜑 ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |