This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wfi | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
| 3 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 4 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
| 7 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) | |
| 8 | 2 6 7 | 3jca | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 9 | frpoind | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |