This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| Assertion | frmdsssubm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | sswrd | ⊢ ( 𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ⊆ Word 𝐼 ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 5 | 1 4 | frmdbas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 7 | 3 6 | sseqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ) |
| 8 | wrd0 | ⊢ ∅ ∈ Word 𝐽 | |
| 9 | 8 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ∅ ∈ Word 𝐽 ) |
| 10 | 7 | sselda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ Word 𝐽 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
| 11 | 7 | sselda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑦 ∈ Word 𝐽 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
| 12 | 10 11 | anim12dan | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 14 | 1 4 13 | frmdadd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
| 15 | 12 14 | syl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
| 16 | ccatcl | ⊢ ( ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐽 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐽 ) |
| 18 | 15 17 | eqeltrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ ( 𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) |
| 19 | 18 | ralrimivva | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) |
| 20 | 1 | frmdmnd | ⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝑀 ∈ Mnd ) |
| 22 | 1 | frmd0 | ⊢ ∅ = ( 0g ‘ 𝑀 ) |
| 23 | 4 22 13 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ∧ ∅ ∈ Word 𝐽 ∧ ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( Word 𝐽 ⊆ ( Base ‘ 𝑀 ) ∧ ∅ ∈ Word 𝐽 ∧ ∀ 𝑥 ∈ Word 𝐽 ∀ 𝑦 ∈ Word 𝐽 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐽 ) ) ) |
| 25 | 7 9 19 24 | mpbir3and | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → Word 𝐽 ∈ ( SubMnd ‘ 𝑀 ) ) |