This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| Assertion | frmdsssubm | |- ( ( I e. V /\ J C_ I ) -> Word J e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| 2 | sswrd | |- ( J C_ I -> Word J C_ Word I ) |
|
| 3 | 2 | adantl | |- ( ( I e. V /\ J C_ I ) -> Word J C_ Word I ) |
| 4 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 5 | 1 4 | frmdbas | |- ( I e. V -> ( Base ` M ) = Word I ) |
| 6 | 5 | adantr | |- ( ( I e. V /\ J C_ I ) -> ( Base ` M ) = Word I ) |
| 7 | 3 6 | sseqtrrd | |- ( ( I e. V /\ J C_ I ) -> Word J C_ ( Base ` M ) ) |
| 8 | wrd0 | |- (/) e. Word J |
|
| 9 | 8 | a1i | |- ( ( I e. V /\ J C_ I ) -> (/) e. Word J ) |
| 10 | 7 | sselda | |- ( ( ( I e. V /\ J C_ I ) /\ x e. Word J ) -> x e. ( Base ` M ) ) |
| 11 | 7 | sselda | |- ( ( ( I e. V /\ J C_ I ) /\ y e. Word J ) -> y e. ( Base ` M ) ) |
| 12 | 10 11 | anim12dan | |- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) |
| 13 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 14 | 1 4 13 | frmdadd | |- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
| 15 | 12 14 | syl | |- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
| 16 | ccatcl | |- ( ( x e. Word J /\ y e. Word J ) -> ( x ++ y ) e. Word J ) |
|
| 17 | 16 | adantl | |- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ++ y ) e. Word J ) |
| 18 | 15 17 | eqeltrd | |- ( ( ( I e. V /\ J C_ I ) /\ ( x e. Word J /\ y e. Word J ) ) -> ( x ( +g ` M ) y ) e. Word J ) |
| 19 | 18 | ralrimivva | |- ( ( I e. V /\ J C_ I ) -> A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) |
| 20 | 1 | frmdmnd | |- ( I e. V -> M e. Mnd ) |
| 21 | 20 | adantr | |- ( ( I e. V /\ J C_ I ) -> M e. Mnd ) |
| 22 | 1 | frmd0 | |- (/) = ( 0g ` M ) |
| 23 | 4 22 13 | issubm | |- ( M e. Mnd -> ( Word J e. ( SubMnd ` M ) <-> ( Word J C_ ( Base ` M ) /\ (/) e. Word J /\ A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) ) ) |
| 24 | 21 23 | syl | |- ( ( I e. V /\ J C_ I ) -> ( Word J e. ( SubMnd ` M ) <-> ( Word J C_ ( Base ` M ) /\ (/) e. Word J /\ A. x e. Word J A. y e. Word J ( x ( +g ` M ) y ) e. Word J ) ) ) |
| 25 | 7 9 19 24 | mpbir3and | |- ( ( I e. V /\ J C_ I ) -> Word J e. ( SubMnd ` M ) ) |