This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmbas3.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) ) | |
| frlmbas3.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| frlmbas3.v | ⊢ 𝑉 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmbas3 | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → ( 𝐼 𝑋 𝐽 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmbas3.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) ) | |
| 2 | frlmbas3.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | frlmbas3.v | ⊢ 𝑉 = ( Base ‘ 𝐹 ) | |
| 4 | 3 | eleq2i | ⊢ ( 𝑋 ∈ 𝑉 ↔ 𝑋 ∈ ( Base ‘ 𝐹 ) ) |
| 5 | 4 | biimpi | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( Base ‘ 𝐹 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝐹 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → 𝑋 ∈ ( Base ‘ 𝐹 ) ) |
| 8 | simpl | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝑊 ) | |
| 9 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑁 × 𝑀 ) ∈ Fin ) | |
| 10 | 8 9 | anim12i | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ) → ( 𝑅 ∈ 𝑊 ∧ ( 𝑁 × 𝑀 ) ∈ Fin ) ) |
| 11 | 10 | 3adant3 | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → ( 𝑅 ∈ 𝑊 ∧ ( 𝑁 × 𝑀 ) ∈ Fin ) ) |
| 12 | 1 2 | frlmfibas | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ ( 𝑁 × 𝑀 ) ∈ Fin ) → ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) = ( Base ‘ 𝐹 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) = ( Base ‘ 𝐹 ) ) |
| 14 | 7 13 | eleqtrrd | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 15 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 17 | simp3l | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → 𝐼 ∈ 𝑁 ) | |
| 18 | simp3r | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → 𝐽 ∈ 𝑀 ) | |
| 19 | 16 17 18 | fovcdmd | ⊢ ( ( ( 𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀 ) ) → ( 𝐼 𝑋 𝐽 ) ∈ 𝐵 ) |