This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmsslss.y | |- Y = ( R freeLMod I ) |
|
| frlmsslss.u | |- U = ( LSubSp ` Y ) |
||
| frlmsslss.b | |- B = ( Base ` Y ) |
||
| frlmsslss.z | |- .0. = ( 0g ` R ) |
||
| frlmsslss2.c | |- C = { x e. B | ( x supp .0. ) C_ J } |
||
| Assertion | frlmsslss2 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmsslss.u | |- U = ( LSubSp ` Y ) |
|
| 3 | frlmsslss.b | |- B = ( Base ` Y ) |
|
| 4 | frlmsslss.z | |- .0. = ( 0g ` R ) |
|
| 5 | frlmsslss2.c | |- C = { x e. B | ( x supp .0. ) C_ J } |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 1 6 3 | frlmbasf | |- ( ( I e. V /\ x e. B ) -> x : I --> ( Base ` R ) ) |
| 8 | 7 | 3ad2antl2 | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x : I --> ( Base ` R ) ) |
| 9 | 8 | ffnd | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x Fn I ) |
| 10 | simpl3 | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> J C_ I ) |
|
| 11 | undif | |- ( J C_ I <-> ( J u. ( I \ J ) ) = I ) |
|
| 12 | 10 11 | sylib | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( J u. ( I \ J ) ) = I ) |
| 13 | 12 | fneq2d | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( x Fn ( J u. ( I \ J ) ) <-> x Fn I ) ) |
| 14 | 9 13 | mpbird | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x Fn ( J u. ( I \ J ) ) ) |
| 15 | simpr | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> x e. B ) |
|
| 16 | 4 | fvexi | |- .0. e. _V |
| 17 | 16 | a1i | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> .0. e. _V ) |
| 18 | disjdif | |- ( J i^i ( I \ J ) ) = (/) |
|
| 19 | 18 | a1i | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( J i^i ( I \ J ) ) = (/) ) |
| 20 | fnsuppres | |- ( ( x Fn ( J u. ( I \ J ) ) /\ ( x e. B /\ .0. e. _V ) /\ ( J i^i ( I \ J ) ) = (/) ) -> ( ( x supp .0. ) C_ J <-> ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) ) ) |
|
| 21 | 14 15 17 19 20 | syl121anc | |- ( ( ( R e. Ring /\ I e. V /\ J C_ I ) /\ x e. B ) -> ( ( x supp .0. ) C_ J <-> ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) ) ) |
| 22 | 21 | rabbidva | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x supp .0. ) C_ J } = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } ) |
| 23 | 5 22 | eqtrid | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } ) |
| 24 | difssd | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> ( I \ J ) C_ I ) |
|
| 25 | eqid | |- { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } = { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } |
|
| 26 | 1 2 3 4 25 | frlmsslss | |- ( ( R e. Ring /\ I e. V /\ ( I \ J ) C_ I ) -> { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } e. U ) |
| 27 | 24 26 | syld3an3 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x |` ( I \ J ) ) = ( ( I \ J ) X. { .0. } ) } e. U ) |
| 28 | 23 27 | eqeltrd | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. U ) |