This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgvalb.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmplusgvalb.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| frlmplusgvalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmplusgvalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| frlmplusgvalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| frlmplusgvalb.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| frlmplusgvalb.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| frlmplusgvalb.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| frlmplusgvalb.p | ⊢ ✚ = ( +g ‘ 𝐹 ) | ||
| Assertion | frlmplusgvalb | ⊢ ( 𝜑 → ( 𝑍 = ( 𝑋 ✚ 𝑌 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝑌 ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmplusgvalb.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | frlmplusgvalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | frlmplusgvalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | frlmplusgvalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 6 | frlmplusgvalb.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | frlmplusgvalb.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | frlmplusgvalb.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 9 | frlmplusgvalb.p | ⊢ ✚ = ( +g ‘ 𝐹 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 1 10 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 12 | 3 5 11 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 13 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) | |
| 14 | 13 3 | elmapd | ⊢ ( 𝜑 → ( 𝑍 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑍 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 15 | 12 14 | mpbid | ⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | ffnd | ⊢ ( 𝜑 → 𝑍 Fn 𝐼 ) |
| 17 | 1 | frlmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
| 18 | 6 3 17 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
| 19 | lmodgrp | ⊢ ( 𝐹 ∈ LMod → 𝐹 ∈ Grp ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 21 | 2 9 | grpcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ✚ 𝑌 ) ∈ 𝐵 ) |
| 22 | 20 4 7 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) ∈ 𝐵 ) |
| 23 | 1 10 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑋 ✚ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ✚ 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 24 | 3 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 25 | 13 3 | elmapd | ⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑋 ✚ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 26 | 24 25 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 | 26 | ffnd | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) Fn 𝐼 ) |
| 28 | eqfnfv | ⊢ ( ( 𝑍 Fn 𝐼 ∧ ( 𝑋 ✚ 𝑌 ) Fn 𝐼 ) → ( 𝑍 = ( 𝑋 ✚ 𝑌 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ✚ 𝑌 ) ‘ 𝑖 ) ) ) | |
| 29 | 16 27 28 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 = ( 𝑋 ✚ 𝑌 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ✚ 𝑌 ) ‘ 𝑖 ) ) ) |
| 30 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 31 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) |
| 33 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑌 ∈ 𝐵 ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) | |
| 35 | 1 2 30 31 32 33 34 8 9 | frlmvplusgvalc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝑖 ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝑌 ‘ 𝑖 ) ) ) |
| 36 | 35 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ✚ 𝑌 ) ‘ 𝑖 ) ↔ ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝑌 ‘ 𝑖 ) ) ) ) |
| 37 | 36 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ✚ 𝑌 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝑌 ‘ 𝑖 ) ) ) ) |
| 38 | 29 37 | bitrd | ⊢ ( 𝜑 → ( 𝑍 = ( 𝑋 ✚ 𝑌 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝑋 ‘ 𝑖 ) + ( 𝑌 ‘ 𝑖 ) ) ) ) |