This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvplusgvalc.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmvplusgvalc.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| frlmvplusgvalc.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| frlmvplusgvalc.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmvplusgvalc.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| frlmvplusgvalc.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| frlmvplusgvalc.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| frlmvplusgvalc.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| frlmvplusgvalc.p | ⊢ ✚ = ( +g ‘ 𝐹 ) | ||
| Assertion | frlmvplusgvalc | ⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvplusgvalc.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmvplusgvalc.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | frlmvplusgvalc.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 4 | frlmvplusgvalc.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | frlmvplusgvalc.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | frlmvplusgvalc.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | frlmvplusgvalc.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 8 | frlmvplusgvalc.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 9 | frlmvplusgvalc.p | ⊢ ✚ = ( +g ‘ 𝐹 ) | |
| 10 | 1 2 3 4 5 6 8 9 | frlmplusgval | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 1 12 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 15 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) | |
| 16 | 15 4 | elmapd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 17 | 14 16 | mpbid | ⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | 17 | ffnd | ⊢ ( 𝜑 → 𝑋 Fn 𝐼 ) |
| 19 | 1 12 2 | frlmbasmap | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 20 | 4 6 19 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 21 | 15 4 | elmapd | ⊢ ( 𝜑 → ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 22 | 20 21 | mpbid | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 23 | 22 | ffnd | ⊢ ( 𝜑 → 𝑌 Fn 𝐼 ) |
| 24 | fnfvof | ⊢ ( ( ( 𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) | |
| 25 | 18 23 4 7 24 | syl22anc | ⊢ ( 𝜑 → ( ( 𝑋 ∘f + 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |
| 26 | 11 25 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ✚ 𝑌 ) ‘ 𝐽 ) = ( ( 𝑋 ‘ 𝐽 ) + ( 𝑌 ‘ 𝐽 ) ) ) |