This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| frlmplusgvalb.b | |- B = ( Base ` F ) |
||
| frlmplusgvalb.i | |- ( ph -> I e. W ) |
||
| frlmplusgvalb.x | |- ( ph -> X e. B ) |
||
| frlmplusgvalb.z | |- ( ph -> Z e. B ) |
||
| frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
||
| frlmplusgvalb.y | |- ( ph -> Y e. B ) |
||
| frlmplusgvalb.a | |- .+ = ( +g ` R ) |
||
| frlmplusgvalb.p | |- .+b = ( +g ` F ) |
||
| Assertion | frlmplusgvalb | |- ( ph -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmplusgvalb.b | |- B = ( Base ` F ) |
|
| 3 | frlmplusgvalb.i | |- ( ph -> I e. W ) |
|
| 4 | frlmplusgvalb.x | |- ( ph -> X e. B ) |
|
| 5 | frlmplusgvalb.z | |- ( ph -> Z e. B ) |
|
| 6 | frlmplusgvalb.r | |- ( ph -> R e. Ring ) |
|
| 7 | frlmplusgvalb.y | |- ( ph -> Y e. B ) |
|
| 8 | frlmplusgvalb.a | |- .+ = ( +g ` R ) |
|
| 9 | frlmplusgvalb.p | |- .+b = ( +g ` F ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 1 10 2 | frlmbasmap | |- ( ( I e. W /\ Z e. B ) -> Z e. ( ( Base ` R ) ^m I ) ) |
| 12 | 3 5 11 | syl2anc | |- ( ph -> Z e. ( ( Base ` R ) ^m I ) ) |
| 13 | fvexd | |- ( ph -> ( Base ` R ) e. _V ) |
|
| 14 | 13 3 | elmapd | |- ( ph -> ( Z e. ( ( Base ` R ) ^m I ) <-> Z : I --> ( Base ` R ) ) ) |
| 15 | 12 14 | mpbid | |- ( ph -> Z : I --> ( Base ` R ) ) |
| 16 | 15 | ffnd | |- ( ph -> Z Fn I ) |
| 17 | 1 | frlmlmod | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
| 18 | 6 3 17 | syl2anc | |- ( ph -> F e. LMod ) |
| 19 | lmodgrp | |- ( F e. LMod -> F e. Grp ) |
|
| 20 | 18 19 | syl | |- ( ph -> F e. Grp ) |
| 21 | 2 9 | grpcl | |- ( ( F e. Grp /\ X e. B /\ Y e. B ) -> ( X .+b Y ) e. B ) |
| 22 | 20 4 7 21 | syl3anc | |- ( ph -> ( X .+b Y ) e. B ) |
| 23 | 1 10 2 | frlmbasmap | |- ( ( I e. W /\ ( X .+b Y ) e. B ) -> ( X .+b Y ) e. ( ( Base ` R ) ^m I ) ) |
| 24 | 3 22 23 | syl2anc | |- ( ph -> ( X .+b Y ) e. ( ( Base ` R ) ^m I ) ) |
| 25 | 13 3 | elmapd | |- ( ph -> ( ( X .+b Y ) e. ( ( Base ` R ) ^m I ) <-> ( X .+b Y ) : I --> ( Base ` R ) ) ) |
| 26 | 24 25 | mpbid | |- ( ph -> ( X .+b Y ) : I --> ( Base ` R ) ) |
| 27 | 26 | ffnd | |- ( ph -> ( X .+b Y ) Fn I ) |
| 28 | eqfnfv | |- ( ( Z Fn I /\ ( X .+b Y ) Fn I ) -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) ) ) |
|
| 29 | 16 27 28 | syl2anc | |- ( ph -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) ) ) |
| 30 | 6 | adantr | |- ( ( ph /\ i e. I ) -> R e. Ring ) |
| 31 | 3 | adantr | |- ( ( ph /\ i e. I ) -> I e. W ) |
| 32 | 4 | adantr | |- ( ( ph /\ i e. I ) -> X e. B ) |
| 33 | 7 | adantr | |- ( ( ph /\ i e. I ) -> Y e. B ) |
| 34 | simpr | |- ( ( ph /\ i e. I ) -> i e. I ) |
|
| 35 | 1 2 30 31 32 33 34 8 9 | frlmvplusgvalc | |- ( ( ph /\ i e. I ) -> ( ( X .+b Y ) ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) |
| 36 | 35 | eqeq2d | |- ( ( ph /\ i e. I ) -> ( ( Z ` i ) = ( ( X .+b Y ) ` i ) <-> ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |
| 37 | 36 | ralbidva | |- ( ph -> ( A. i e. I ( Z ` i ) = ( ( X .+b Y ) ` i ) <-> A. i e. I ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |
| 38 | 29 37 | bitrd | |- ( ph -> ( Z = ( X .+b Y ) <-> A. i e. I ( Z ` i ) = ( ( X ` i ) .+ ( Y ` i ) ) ) ) |