This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Free modules
frlmbasfsupp
Metamath Proof Explorer
Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear , 3-Feb-2015) (Revised by Thierry Arnoux , 21-Jun-2019)
(Proof shortened by AV , 20-Jul-2019)
Ref
Expression
Hypotheses
frlmval.f
⊢ F = R freeLMod I
frlmbasfsupp.z
⊢ 0 ˙ = 0 R
frlmbasfsupp.b
⊢ B = Base F
Assertion
frlmbasfsupp
⊢ I ∈ W ∧ X ∈ B → finSupp 0 ˙ ⁡ X
Proof
Step
Hyp
Ref
Expression
1
frlmval.f
⊢ F = R freeLMod I
2
frlmbasfsupp.z
⊢ 0 ˙ = 0 R
3
frlmbasfsupp.b
⊢ B = Base F
4
simpr
⊢ I ∈ W ∧ X ∈ B → X ∈ B
5
1 3
frlmrcl
⊢ X ∈ B → R ∈ V
6
simpl
⊢ I ∈ W ∧ X ∈ B → I ∈ W
7
eqid
⊢ Base R = Base R
8
1 7 2 3
frlmelbas
⊢ R ∈ V ∧ I ∈ W → X ∈ B ↔ X ∈ Base R I ∧ finSupp 0 ˙ ⁡ X
9
5 6 8
syl2an2
⊢ I ∈ W ∧ X ∈ B → X ∈ B ↔ X ∈ Base R I ∧ finSupp 0 ˙ ⁡ X
10
4 9
mpbid
⊢ I ∈ W ∧ X ∈ B → X ∈ Base R I ∧ finSupp 0 ˙ ⁡ X
11
10
simprd
⊢ I ∈ W ∧ X ∈ B → finSupp 0 ˙ ⁡ X