This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmrcl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmrcl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmrcl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | df-frlm | ⊢ freeLMod = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑟 ⊕m ( 𝑖 × { ( ringLMod ‘ 𝑟 ) } ) ) ) | |
| 4 | 3 | reldmmpo | ⊢ Rel dom freeLMod |
| 5 | 1 2 4 | strov2rcl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V ) |