This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgcpbl2 | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝑋 ++ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ∼ Er 𝑊 ) |
| 9 | simpl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∼ 𝑋 ) | |
| 10 | 8 9 | ercl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∈ 𝑊 ) |
| 11 | wrd0 | ⊢ ∅ ∈ Word ( 𝐼 × 2o ) | |
| 12 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 14 | 13 | simprd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 15 | 11 14 | eleqtrrid | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ∅ ∈ 𝑊 ) |
| 16 | simpr | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∼ 𝑌 ) | |
| 17 | 1 2 3 4 5 6 | efgcpbl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) ) |
| 18 | 10 15 16 17 | syl3anc | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) ) |
| 19 | 10 14 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 20 | 8 16 | ercl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∈ 𝑊 ) |
| 21 | 20 14 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∈ Word ( 𝐼 × 2o ) ) |
| 22 | ccatcl | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) |
| 24 | ccatrid | ⊢ ( ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) ) |
| 26 | 8 16 | ercl2 | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑌 ∈ 𝑊 ) |
| 27 | 26 14 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑌 ∈ Word ( 𝐼 × 2o ) ) |
| 28 | ccatcl | ⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝑌 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 29 | 19 27 28 | syl2anc | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) ) |
| 30 | ccatrid | ⊢ ( ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) ) |
| 32 | 18 25 31 | 3brtr3d | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝐴 ++ 𝑌 ) ) |
| 33 | 1 2 3 4 5 6 | efgcpbl | ⊢ ( ( ∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ∼ ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) ) |
| 34 | 15 26 9 33 | syl3anc | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ∼ ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) ) |
| 35 | ccatlid | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝐴 ) = 𝐴 ) | |
| 36 | 19 35 | syl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ∅ ++ 𝐴 ) = 𝐴 ) |
| 37 | 36 | oveq1d | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) = ( 𝐴 ++ 𝑌 ) ) |
| 38 | 8 9 | ercl2 | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑋 ∈ 𝑊 ) |
| 39 | 38 14 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑋 ∈ Word ( 𝐼 × 2o ) ) |
| 40 | ccatlid | ⊢ ( 𝑋 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝑋 ) = 𝑋 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ∅ ++ 𝑋 ) = 𝑋 ) |
| 42 | 41 | oveq1d | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) = ( 𝑋 ++ 𝑌 ) ) |
| 43 | 34 37 42 | 3brtr3d | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝑌 ) ∼ ( 𝑋 ++ 𝑌 ) ) |
| 44 | 8 32 43 | ertrd | ⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝑋 ++ 𝑌 ) ) |