This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodn0.1 | |- ( ph -> A e. Fin ) |
|
| fprodn0.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprodn0.3 | |- ( ( ph /\ k e. A ) -> B =/= 0 ) |
||
| Assertion | fprodn0 | |- ( ph -> prod_ k e. A B =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodn0.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fprodn0.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fprodn0.3 | |- ( ( ph /\ k e. A ) -> B =/= 0 ) |
|
| 4 | prodeq1 | |- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
|
| 5 | prod0 | |- prod_ k e. (/) B = 1 |
|
| 6 | 4 5 | eqtrdi | |- ( A = (/) -> prod_ k e. A B = 1 ) |
| 7 | ax-1ne0 | |- 1 =/= 0 |
|
| 8 | 7 | a1i | |- ( A = (/) -> 1 =/= 0 ) |
| 9 | 6 8 | eqnetrd | |- ( A = (/) -> prod_ k e. A B =/= 0 ) |
| 10 | 9 | a1i | |- ( ph -> ( A = (/) -> prod_ k e. A B =/= 0 ) ) |
| 11 | prodfc | |- prod_ m e. A ( ( k e. A |-> B ) ` m ) = prod_ k e. A B |
|
| 12 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 13 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 14 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 15 | 2 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 17 | 16 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 18 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 19 | 14 18 | syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 20 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 21 | 19 20 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 22 | 12 13 14 17 21 | fprod | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 23 | 11 22 | eqtr3id | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B = ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 24 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 25 | 13 24 | eleqtrdi | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 26 | fco | |- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 27 | 16 19 26 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 28 | 27 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) e. CC ) |
| 29 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) = ( ( k e. A |-> B ) ` ( f ` m ) ) ) |
|
| 30 | 19 29 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) = ( ( k e. A |-> B ) ` ( f ` m ) ) ) |
| 31 | 18 | ffvelcdmda | |- ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ m e. ( 1 ... ( # ` A ) ) ) -> ( f ` m ) e. A ) |
| 32 | 31 | adantll | |- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( f ` m ) e. A ) |
| 33 | simpr | |- ( ( ph /\ ( f ` m ) e. A ) -> ( f ` m ) e. A ) |
|
| 34 | nfcv | |- F/_ k ( f ` m ) |
|
| 35 | nfv | |- F/ k ph |
|
| 36 | nfcsb1v | |- F/_ k [_ ( f ` m ) / k ]_ B |
|
| 37 | 36 | nfel1 | |- F/ k [_ ( f ` m ) / k ]_ B e. CC |
| 38 | 35 37 | nfim | |- F/ k ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) |
| 39 | csbeq1a | |- ( k = ( f ` m ) -> B = [_ ( f ` m ) / k ]_ B ) |
|
| 40 | 39 | eleq1d | |- ( k = ( f ` m ) -> ( B e. CC <-> [_ ( f ` m ) / k ]_ B e. CC ) ) |
| 41 | 40 | imbi2d | |- ( k = ( f ` m ) -> ( ( ph -> B e. CC ) <-> ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) ) ) |
| 42 | 2 | expcom | |- ( k e. A -> ( ph -> B e. CC ) ) |
| 43 | 34 38 41 42 | vtoclgaf | |- ( ( f ` m ) e. A -> ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) ) |
| 44 | 43 | impcom | |- ( ( ph /\ ( f ` m ) e. A ) -> [_ ( f ` m ) / k ]_ B e. CC ) |
| 45 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 46 | 45 | fvmpts | |- ( ( ( f ` m ) e. A /\ [_ ( f ` m ) / k ]_ B e. CC ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) = [_ ( f ` m ) / k ]_ B ) |
| 47 | 33 44 46 | syl2anc | |- ( ( ph /\ ( f ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) = [_ ( f ` m ) / k ]_ B ) |
| 48 | nfcv | |- F/_ k 0 |
|
| 49 | 36 48 | nfne | |- F/ k [_ ( f ` m ) / k ]_ B =/= 0 |
| 50 | 35 49 | nfim | |- F/ k ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) |
| 51 | 39 | neeq1d | |- ( k = ( f ` m ) -> ( B =/= 0 <-> [_ ( f ` m ) / k ]_ B =/= 0 ) ) |
| 52 | 51 | imbi2d | |- ( k = ( f ` m ) -> ( ( ph -> B =/= 0 ) <-> ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) ) ) |
| 53 | 3 | expcom | |- ( k e. A -> ( ph -> B =/= 0 ) ) |
| 54 | 34 50 52 53 | vtoclgaf | |- ( ( f ` m ) e. A -> ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) ) |
| 55 | 54 | impcom | |- ( ( ph /\ ( f ` m ) e. A ) -> [_ ( f ` m ) / k ]_ B =/= 0 ) |
| 56 | 47 55 | eqnetrd | |- ( ( ph /\ ( f ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
| 57 | 32 56 | sylan2 | |- ( ( ph /\ ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ m e. ( 1 ... ( # ` A ) ) ) ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
| 58 | 57 | anassrs | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
| 59 | 30 58 | eqnetrd | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) =/= 0 ) |
| 60 | 25 28 59 | prodfn0 | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) =/= 0 ) |
| 61 | 23 60 | eqnetrd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B =/= 0 ) |
| 62 | 61 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B =/= 0 ) ) |
| 63 | 62 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B =/= 0 ) ) |
| 64 | 63 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A B =/= 0 ) ) |
| 65 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 66 | 1 65 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 67 | 10 64 66 | mpjaod | |- ( ph -> prod_ k e. A B =/= 0 ) |