This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of a finite product are greater than or equal to 1 , so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodge1.ph | |- F/ k ph |
|
| fprodge1.a | |- ( ph -> A e. Fin ) |
||
| fprodge1.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fprodge1.ge | |- ( ( ph /\ k e. A ) -> 1 <_ B ) |
||
| Assertion | fprodge1 | |- ( ph -> 1 <_ prod_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodge1.ph | |- F/ k ph |
|
| 2 | fprodge1.a | |- ( ph -> A e. Fin ) |
|
| 3 | fprodge1.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 4 | fprodge1.ge | |- ( ( ph /\ k e. A ) -> 1 <_ B ) |
|
| 5 | 1xr | |- 1 e. RR* |
|
| 6 | pnfxr | |- +oo e. RR* |
|
| 7 | 1re | |- 1 e. RR |
|
| 8 | icossre | |- ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 [,) +oo ) C_ RR ) |
|
| 9 | 7 6 8 | mp2an | |- ( 1 [,) +oo ) C_ RR |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | 9 10 | sstri | |- ( 1 [,) +oo ) C_ CC |
| 12 | 11 | a1i | |- ( ph -> ( 1 [,) +oo ) C_ CC ) |
| 13 | 5 | a1i | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR* ) |
| 14 | 6 | a1i | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> +oo e. RR* ) |
| 15 | 9 | sseli | |- ( x e. ( 1 [,) +oo ) -> x e. RR ) |
| 16 | 15 | adantr | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> x e. RR ) |
| 17 | 9 | sseli | |- ( y e. ( 1 [,) +oo ) -> y e. RR ) |
| 18 | 17 | adantl | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> y e. RR ) |
| 19 | 16 18 | remulcld | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR ) |
| 20 | 19 | rexrd | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR* ) |
| 21 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 22 | 7 | a1i | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR ) |
| 23 | 0le1 | |- 0 <_ 1 |
|
| 24 | 23 | a1i | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 0 <_ 1 ) |
| 25 | icogelb | |- ( ( 1 e. RR* /\ +oo e. RR* /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
|
| 26 | 5 6 25 | mp3an12 | |- ( x e. ( 1 [,) +oo ) -> 1 <_ x ) |
| 27 | 26 | adantr | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
| 28 | icogelb | |- ( ( 1 e. RR* /\ +oo e. RR* /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) |
|
| 29 | 5 6 28 | mp3an12 | |- ( y e. ( 1 [,) +oo ) -> 1 <_ y ) |
| 30 | 29 | adantl | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) |
| 31 | 22 16 22 18 24 24 27 30 | lemul12ad | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( 1 x. 1 ) <_ ( x x. y ) ) |
| 32 | 21 31 | eqbrtrrid | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ ( x x. y ) ) |
| 33 | 19 | ltpnfd | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) < +oo ) |
| 34 | 13 14 20 32 33 | elicod | |- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) |
| 35 | 34 | adantl | |- ( ( ph /\ ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) |
| 36 | 5 | a1i | |- ( ( ph /\ k e. A ) -> 1 e. RR* ) |
| 37 | 6 | a1i | |- ( ( ph /\ k e. A ) -> +oo e. RR* ) |
| 38 | 3 | rexrd | |- ( ( ph /\ k e. A ) -> B e. RR* ) |
| 39 | 3 | ltpnfd | |- ( ( ph /\ k e. A ) -> B < +oo ) |
| 40 | 36 37 38 4 39 | elicod | |- ( ( ph /\ k e. A ) -> B e. ( 1 [,) +oo ) ) |
| 41 | 1le1 | |- 1 <_ 1 |
|
| 42 | ltpnf | |- ( 1 e. RR -> 1 < +oo ) |
|
| 43 | 7 42 | ax-mp | |- 1 < +oo |
| 44 | elico2 | |- ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) ) |
|
| 45 | 7 6 44 | mp2an | |- ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) |
| 46 | 7 41 43 45 | mpbir3an | |- 1 e. ( 1 [,) +oo ) |
| 47 | 46 | a1i | |- ( ph -> 1 e. ( 1 [,) +oo ) ) |
| 48 | 1 12 35 2 40 47 | fprodcllemf | |- ( ph -> prod_ k e. A B e. ( 1 [,) +oo ) ) |
| 49 | icogelb | |- ( ( 1 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 1 [,) +oo ) ) -> 1 <_ prod_ k e. A B ) |
|
| 50 | 5 6 48 49 | mp3an12i | |- ( ph -> 1 <_ prod_ k e. A B ) |