This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fofinf1o | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 2 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 | domnsym | ⊢ ( 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) → ¬ ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) | |
| 5 | simp3 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ Fin ) | |
| 6 | simp2 | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ≈ 𝐵 ) | |
| 7 | enfii | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ∈ Fin ) |
| 10 | difssd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) | |
| 11 | simplrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝐴 ) | |
| 12 | neldifsn | ⊢ ¬ 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) | |
| 13 | nelne1 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) ) → 𝐴 ≠ ( 𝐴 ∖ { 𝑦 } ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ≠ ( 𝐴 ∖ { 𝑦 } ) ) |
| 15 | 14 | necomd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) |
| 16 | df-pss | ⊢ ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ↔ ( ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) ) | |
| 17 | 10 15 16 | sylanbrc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) |
| 18 | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ) | |
| 19 | 9 17 18 | syl2anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ) |
| 20 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ≈ 𝐵 ) |
| 21 | sdomentr | ⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) |
| 23 | 4 22 | nsyl3 | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ¬ 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 24 | 8 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐴 ∈ Fin ) |
| 25 | difss | ⊢ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 | |
| 26 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
| 28 | 3 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 29 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ) | |
| 30 | 28 25 29 | sylancl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ) |
| 31 | 1 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 32 | foelrn | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) | |
| 33 | 31 32 | sylan | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) |
| 34 | simprll | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 35 | simprrr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ≠ 𝑦 ) | |
| 36 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) | |
| 37 | 34 35 36 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ) |
| 38 | simprrl | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 39 | 38 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 40 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 41 | 40 | rspceeqv | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 42 | 37 39 41 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 43 | fveqeq2 | ⊢ ( 𝑢 = 𝑦 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) ) | |
| 44 | 43 | rexbidv | ⊢ ( 𝑢 = 𝑦 → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 45 | 42 44 | syl5ibrcom | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝑢 = 𝑦 → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 = 𝑦 → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 47 | 46 | imp | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑢 = 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 48 | eldifsn | ⊢ ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦 ) ) | |
| 49 | eqid | ⊢ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) | |
| 50 | fveq2 | ⊢ ( 𝑤 = 𝑢 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 51 | 50 | rspceeqv | ⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 52 | 49 51 | mpan2 | ⊢ ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 53 | 48 52 | sylbir | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 54 | 53 | adantll | ⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑢 ≠ 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 55 | 47 54 | pm2.61dane | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 56 | fvres | ⊢ ( 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 57 | 56 | eqeq2d | ⊢ ( 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) → ( 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ) |
| 58 | 57 | rexbiia | ⊢ ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) |
| 59 | eqeq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) | |
| 60 | 59 | rexbidv | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 61 | 58 60 | bitrid | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 62 | 55 61 | syl5ibrcom | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) |
| 63 | 62 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 65 | 33 64 | syldan | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 66 | 65 | ralrimiva | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 67 | dffo3 | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) | |
| 68 | 30 66 67 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ) |
| 69 | fodomfi | ⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ∧ ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) | |
| 70 | 27 68 69 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 71 | 70 | anassrs | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 72 | 71 | expr | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ≠ 𝑦 → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) ) |
| 73 | 72 | necon1bd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ¬ 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) → 𝑥 = 𝑦 ) ) |
| 74 | 23 73 | mpd | ⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 75 | 74 | ex | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 76 | 75 | ralrimivva | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 77 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 78 | 3 76 77 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 79 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 80 | 78 1 79 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |