This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
||
| fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
||
| fnwe2.f | |- ( ph -> ( F |` A ) : A --> B ) |
||
| fnwe2.r | |- ( ph -> R We B ) |
||
| Assertion | fnwe2 | |- ( ph -> T We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| 2 | fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
|
| 3 | fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
|
| 4 | fnwe2.f | |- ( ph -> ( F |` A ) : A --> B ) |
|
| 5 | fnwe2.r | |- ( ph -> R We B ) |
|
| 6 | 3 | adantlr | |- ( ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 7 | 4 | adantr | |- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> ( F |` A ) : A --> B ) |
| 8 | 5 | adantr | |- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> R We B ) |
| 9 | simprl | |- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> a C_ A ) |
|
| 10 | simprr | |- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> a =/= (/) ) |
|
| 11 | 1 2 6 7 8 9 10 | fnwe2lem2 | |- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> E. c e. a A. d e. a -. d T c ) |
| 12 | 11 | ex | |- ( ph -> ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
| 13 | 12 | alrimiv | |- ( ph -> A. a ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
| 14 | df-fr | |- ( T Fr A <-> A. a ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
|
| 15 | 13 14 | sylibr | |- ( ph -> T Fr A ) |
| 16 | 3 | adantlr | |- ( ( ( ph /\ ( a e. A /\ b e. A ) ) /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 17 | 4 | adantr | |- ( ( ph /\ ( a e. A /\ b e. A ) ) -> ( F |` A ) : A --> B ) |
| 18 | 5 | adantr | |- ( ( ph /\ ( a e. A /\ b e. A ) ) -> R We B ) |
| 19 | simprl | |- ( ( ph /\ ( a e. A /\ b e. A ) ) -> a e. A ) |
|
| 20 | simprr | |- ( ( ph /\ ( a e. A /\ b e. A ) ) -> b e. A ) |
|
| 21 | 1 2 16 17 18 19 20 | fnwe2lem3 | |- ( ( ph /\ ( a e. A /\ b e. A ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 22 | 21 | ralrimivva | |- ( ph -> A. a e. A A. b e. A ( a T b \/ a = b \/ b T a ) ) |
| 23 | dfwe2 | |- ( T We A <-> ( T Fr A /\ A. a e. A A. b e. A ( a T b \/ a = b \/ b T a ) ) ) |
|
| 24 | 15 22 23 | sylanbrc | |- ( ph -> T We A ) |