This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimfcls | |- ( J fLim F ) C_ ( J fClus F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop | |- ( a e. ( J fLim F ) -> J e. Top ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | flimfil | |- ( a e. ( J fLim F ) -> F e. ( Fil ` U. J ) ) |
| 4 | flimclsi | |- ( x e. F -> ( J fLim F ) C_ ( ( cls ` J ) ` x ) ) |
|
| 5 | 4 | sseld | |- ( x e. F -> ( a e. ( J fLim F ) -> a e. ( ( cls ` J ) ` x ) ) ) |
| 6 | 5 | com12 | |- ( a e. ( J fLim F ) -> ( x e. F -> a e. ( ( cls ` J ) ` x ) ) ) |
| 7 | 6 | ralrimiv | |- ( a e. ( J fLim F ) -> A. x e. F a e. ( ( cls ` J ) ` x ) ) |
| 8 | 2 | isfcls | |- ( a e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` U. J ) /\ A. x e. F a e. ( ( cls ` J ) ` x ) ) ) |
| 9 | 1 3 7 8 | syl3anbrc | |- ( a e. ( J fLim F ) -> a e. ( J fClus F ) ) |
| 10 | 9 | ssriv | |- ( J fLim F ) C_ ( J fClus F ) |