This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009) (Revised by Mario Carneiro, 15-Dec-2013) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flffval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fLimf 𝐿 ) = ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | fvssunirn | ⊢ ( Fil ‘ 𝑌 ) ⊆ ∪ ran Fil | |
| 3 | 2 | sseli | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ∪ ran Fil ) |
| 4 | unieq | ⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽 ) | |
| 5 | unieq | ⊢ ( 𝑦 = 𝐿 → ∪ 𝑦 = ∪ 𝐿 ) | |
| 6 | 4 5 | oveqan12d | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ( ∪ 𝑥 ↑m ∪ 𝑦 ) = ( ∪ 𝐽 ↑m ∪ 𝐿 ) ) |
| 7 | simpl | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → 𝑥 = 𝐽 ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ∪ 𝑥 = ∪ 𝐽 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ( ∪ 𝑥 FilMap 𝑓 ) = ( ∪ 𝐽 FilMap 𝑓 ) ) |
| 10 | simpr | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → 𝑦 = 𝐿 ) | |
| 11 | 9 10 | fveq12d | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ( ( ∪ 𝑥 FilMap 𝑓 ) ‘ 𝑦 ) = ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) |
| 12 | 7 11 | oveq12d | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ( 𝑥 fLim ( ( ∪ 𝑥 FilMap 𝑓 ) ‘ 𝑦 ) ) = ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) |
| 13 | 6 12 | mpteq12dv | ⊢ ( ( 𝑥 = 𝐽 ∧ 𝑦 = 𝐿 ) → ( 𝑓 ∈ ( ∪ 𝑥 ↑m ∪ 𝑦 ) ↦ ( 𝑥 fLim ( ( ∪ 𝑥 FilMap 𝑓 ) ‘ 𝑦 ) ) ) = ( 𝑓 ∈ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ↦ ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |
| 14 | df-flf | ⊢ fLimf = ( 𝑥 ∈ Top , 𝑦 ∈ ∪ ran Fil ↦ ( 𝑓 ∈ ( ∪ 𝑥 ↑m ∪ 𝑦 ) ↦ ( 𝑥 fLim ( ( ∪ 𝑥 FilMap 𝑓 ) ‘ 𝑦 ) ) ) ) | |
| 15 | ovex | ⊢ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ∈ V | |
| 16 | 15 | mptex | ⊢ ( 𝑓 ∈ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ↦ ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ∈ V |
| 17 | 13 14 16 | ovmpoa | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ∪ ran Fil ) → ( 𝐽 fLimf 𝐿 ) = ( 𝑓 ∈ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ↦ ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |
| 18 | 1 3 17 | syl2an | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fLimf 𝐿 ) = ( 𝑓 ∈ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ↦ ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |
| 19 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 20 | 19 | eqcomd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝐽 = 𝑋 ) |
| 21 | filunibas | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → ∪ 𝐿 = 𝑌 ) | |
| 22 | 20 21 | oveqan12d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( ∪ 𝐽 ↑m ∪ 𝐿 ) = ( 𝑋 ↑m 𝑌 ) ) |
| 23 | 20 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ∪ 𝐽 = 𝑋 ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( ∪ 𝐽 FilMap 𝑓 ) = ( 𝑋 FilMap 𝑓 ) ) |
| 25 | 24 | fveq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) = ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) |
| 27 | 22 26 | mpteq12dv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑓 ∈ ( ∪ 𝐽 ↑m ∪ 𝐿 ) ↦ ( 𝐽 fLim ( ( ∪ 𝐽 FilMap 𝑓 ) ‘ 𝐿 ) ) ) = ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |
| 28 | 18 27 | eqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fLimf 𝐿 ) = ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) |